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MODELLING THE FINGERING OF IMPACTING DROPLETS
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ABSTRACT

A numerical model has been developed to simulate
the fingering and splashing behaviour associated with
the vigorous impact of a droplet against a solid sur-
face. The model is a three-dimensionalization and
improvement of the two-dimensional RIPPLE [1], an
Eulerian fixed-grid control volume-based free surface
code. Surface tension is treated continuously, as a
force acting on fluid near the interface, and the model
incorporates Youngs’ piecewise-linear volume track-
ing algorithm to follow the free surface. Results are
presented of three simulations of a liquid droplet im-
pacting a surface at different velocities, which demon-
strate behaviour ranging from a slight asymmetry to
the formation of fingers and finally to the onset of
splashing. Results are compared with experiment,
and demonstrate good agreement.

INTRODUCTION

The impact of a droplet against a solid surface is a
common occurrence in many processes including, for
example, ink jet printing, thermal spraying and spray
cooling and forming. If an impact is sufficiently vig-
orous, an instability forms at the fluid rim shortly
after impact, which may lead to an outward growth
of fingers. If the fingers grow sufficiently long, they
too become unstable and break off to form so-called
satellite droplets, which define droplet splashing. Un-
derstanding such behaviour, and predicting the onset
of splashing and the size and number of droplets, is
important for modelling processes such as those men-
tioned.

Studies of such behaviour are few, yet date back to
the beautiful illustrations of Worthington [2]. More
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recently, Allen [3] proposed a simple model to pre-
dict the number of fingers, based on an application
of Rayleigh-Taylor instability theory to the outward
spread of fluid. And Marmanis and Thoroddsen [4]
related the number of fingers to a single dimension-
less parameter incorporating inertial, surface tension
and viscous effects. Predictions in each case demon-
strated reasonable agreement with experiment. Re-
garding the onset of splashing, Stow and Hadfield [5]
and Mundo et al. [6] related experimental observa-
tions to a critical value of a parameter similar to that
of Marmanis and Thoroddsen [4].

Yet despite these results, there is no adequate the-
ory to explain the mechanism which initiates the in-
stability at the droplet rim. Towards that end, this
paper presents a numerical model of droplet impact
to examine fingering and splashing. Where previous
droplet impact models have invoked an assumption
of axisymmetry (e.g. [7, 8]) which precludes mod-
elling fingering and splashing, the model presented
here is fully three-dimensional. The equations and
discretization are presented, followed by the results
of three simulations, which are compared with corre-
sponding photographs.

METHODOLOGY

Equations

Model formulation begins with the assumption that
the surrounding gas phase exerts negligible influence
on the liquid during impact. This implies that surface
viscous stresses are negligible, and that only the lig-
uid phase flowfield need be solved, subject to bound-
ary conditions at the free surface. For an incom-
pressible, Newtonian fluid with constant properties,
the equations of conservation of mass and momentum
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v represents velocity, p pressure, p density, pu viscos-
ity, and Fj any body forces acting on the fluid.

Droplet splashing involves severe fluid deformation,
and so the model employs a volume tracking algo-
rithm to follow the free surface, where fluid volume
is represented by a scalar f, defined as:

f= (3)

1 within the liquid phase
0 without

Since f is a Lagrangian invariant, it satisfies:
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Finally, with surface viscous stresses assumed negligi-
ble, the surface stress condition reduces to Laplace’s
equation for the surface tension-induced pressure
jump Ap;, across the interface:

(5)

v represents the surface tension coefficient and k the
total curvature. Rather than impose Equation 5 as a
boundary condition, surface tension is reformulated
as an equivalent volume force ﬁST, as proposed by
Brackbill et al. [9]:
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7 represents an inward unit normal to the interface
and ¢ the Dirac delta function, and the integration is
performed over some area of free surface S. k and n
may be expressed in terms of f:

k=-V-n (7)
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Formulated in this way, surface tension is then incor-
porated into Equation 2 via Fj.

Boundary conditions at the solid surface are a no-slip,
zero pressure gradient condition. At the free surface,
velocity boundary conditions reflect the zero shear
stress condition subject to the continuity constraint.
Pressure at the free surface is set to zero since surface
tension has been accounted for in Equation 2. And
finally, a contact angle 6 is specified at the contact
line, at which the free surface meets the solid surface,
to close Equation 6.

Discretization

The model which is presented here began as a three-
dimensionalization of the two-dimensional RIPPLE
code [1]. Parts of the discretization remain similar,

and are presented here quickly. The significant differ-
ences relate to the treatment of surface tension and
volume tracking, and are presented separately.

Equations 1, 2, 4 and 6 are discretized on a Cartesian
grid, with velocities specified at the centre of cell faces
and pressure at each cell centre.

f is integrated over each cell volume €;;; to yield a
discrete volume fraction f;j:

1
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fijr = 1if a cell is filled with liquid, f;;x = 0 if a cell
is empty, and 0 < f;; < 1if a cell contains a portion
of the interface, deemed an “interface cell.”

Equations 1 and 2 are solved with a two-step pro-
jection method, in which a time discretization of the
momentum equation is divided into two steps:
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In the first step, Equation 10, an interim velocity V'
is computed explicitly from convective, viscous and
body force accelerations of the known field Vn for a
timestep At. In the second step, V is projected onto a
divergence-free velocity field; combining Equation 11
with Equation 1 yields a Poisson equation for pres-
sure:
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Note that although the fluid is assumed to be in-
compressible, the density is retained within the diver-
gence operator to allow for the evaluation of non-zero
density gradients across the liquid free surface.

vp't) = —V- v (12)

The viscous and pressure terms of Equations 10 and
12 are discretized with centred difference approxima-
tions, while the convective term is treated with the
conservative scheme of van Leer [10].

Surface Tension

Discretization of Equation 6 begins with replacing §
with a finite kernel §., to yield a surface tension force
which applies to volume within a distance € of the
interface:
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Equation 13 is then treated as follows. A cell-centred
surface tension force is evaluated for each interface

cell:
Fsty; = Wz’jk—Q”k Nijk (14)
ijk



where A;j;, is the free surface area contained within
the cell (the area of the planar interface reconstructed
by the f advection algorithm, presented later), and
kijr, and 71, are the cell-centred curvature and unit
normal, respectively. Setting aside the evaluation of
these quantities for a moment, ﬁSTijk is then con-

volved with §, to obtain a smoothed force field FSTi].k :

Fsr,, = ZFSTijkgijk/Q 0c(¥ — Zijr) dy  (15)
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where 6. is integrated from about the cell centre &;jy.
gijk is a weighting function defined by:

Gijk = 4 (16)

where f = 1/2 represents the average value of f,
which transforms the volume force into a body force
irrespective of density.

The particular d. chosen for the model is a radially-
symmetric variation of a kernel proposed by Pe-
skin [11]:
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where ¢ normalizes the kernel:
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The reason for modifying Peskin’s kernel is found in
work by Aleinov and Puckett [12] which demonstrates
that radial symmetry is an attractive attribute of
d.. Good results have been obtained by limiting the
spread radius e to within the immediate neighbouring
cells (a 3x3x3 stencil), which implies that ¢ = 2Ax
for a square grid.

Returning now to the evaluation of 7;j; and kjx,
the approach implemented borrows from the kernel-
based approach to evaluating For. Evaluating V f
with simple difference approximations of f;j; yields
poor estimates of 7;ji, since the interface is nearly
discontinuous. Instead, much better estimates result
from evaluating the gradient of a smoothed field fijk,
obtained by convolving f;;; with .. In practice, the
same kernel and the same spread radius are used for
fijk as for FSTZ-J-k- Unit normals are obtained first at
cell vertices, from which the k;;, are evaluted via a
simple difference approximation to —V - . f;j; are
then obtained by averaging the vertex normals.

Volume Tracking

Since f;;i, is an integrated value, and in order to main-
tain a sharp interface (limited to one or two cells),

the discretization of Equation 4 requires special treat-
ment. Various schemes exist, many of which are geo-
metric rather than algebraic, and which consist essen-
tially of two steps: a reconstruction of the interface
followed by a geometric evaluation of fluxes across
cell faces.

The algorithm implemented in this model is the
three-dimensional scheme of Youngs [13]. The in-
terface is reconstructed by locating a three- to six-
sided plane within each interface cell, corresponding
exactly to fijr and 7;jr. The number of sides equals
the number of cell faces intersected. Note that the re-
construction does not require that adjacent interface
planes be contiguous. The position of the interface
and the velocities at the cell faces are then used to
determine the fluid fluxes across each face during the
timestep. Fluxes are evaluated one dimension at a
time, followed by an interim interface reconstruction.
Directional bias is minimized by alternating the order
of advection from one timestep to the next.

RESULTS

Figures 1-3 illustrate the results of three simulations
of the impact of a 2.7 mm diameter molten tin droplet
onto a polished stainless steel surface at 1, 2 and 3
m/s. Figures 1 and 2 also present corresponding pho-
tographs, obtained with the experimental technique
presented by Pasandideh-Fard et al. [14]. Note that
the surface temperature was maintained at above the
melting point of tin (232°C), to render the impact
isothermal.

Each of the simulations was run on a square grid,
with resolution ranging from 50 to 64 cells per ini-
tial droplet diameter. In each case only one quarter
of a droplet was considered, with symmetry condi-
tions applied at the appropriate mesh boundaries.
This was done to save on run time, and does not
reflect any real symmetry. Rather, since the equa-
tions are discretized on a Cartesian grid, results of
an impact normal to a solid surface are symmetrical
in each of the four quadrants about the point of im-
pact. This of course implies that fingering behaviour
cannot be resolved beyond a multiple of four, as can
be seen from examination of Figures 1-3. A relatively
constant, contact angle 6 &~ 140° was measured from
photographs similar to those presented here, and this
value imposed as the boundary condition at the con-
tact line.

Regarding convergence, results of Figures 1 and 2
changed inappreciably with further grid refinement,
and are deemed to have converged. The same cannot
be said of the results of Figure 3, where the fingering
behaviour evolved slowly with grid refinement even
on the finest grid. The results are included here only



to demonstrate the capability of the model. Futher
refinement is planned as computational resources be-
come available. Each of the simulations ran for sev-
eral days on a SGI Indigo 2 workstation.

The results of Figures 1-3 were obtained without
“forcing” the instabilities. Unlike simulations of sim-
ple configurations of the Rayleigh-Taylor instability
(e.g. [15, 16]), for example, where the interface be-
tween two fluids is initially at rest and must be per-
turbed to initiate motion, the instabilities presented
here result only from the model discretization. In
particular, during early stages of the simulations, in-
ertial effects dominate over surface tension and vis-
cous effects. Figures 1 and 2 in particular reveal
a slight tendency for a droplet to spread preferen-
tially along gridlines rather than diagonally across
the mesh, resulting in the formation of lobes in Fig-
ure 1 and fingers in Figure 2. Simulations of less vig-
orous impacts remain much more symmetrical about
the point of impact.

The results of Figure 1 demonstrate good agreement
with the photographs, from the initial spread of fluid
through to surface-tension induced recoil. In fact,
simulation results beyond those presented here accu-
rately predict the fluid bouncing off of the surface,
and the pinch-off of a small droplet. The results of
Figure 2 are somewhat less accurate, as the model
predicts only eight of the 14 fingers which form during
the outward spread of fluid. However, agreement is
surprisingly good at 7 ms, when both simulation and
experiment predict the recoil of eight fingers. As men-
tioned, the results of Figure 3 are preliminary, but
demonstrate the capability of the model. Note that
the results of Figure 3, and particularly at 1.6 ms,
nonetheless predict the roughly 30 fingers observed
experimentally. The biggest difference between sim-
ulation and experiment is the time to splashing: sim-
ulation results predict the premature formation and
break off of fingers, corresponding to an underresolu-
tion of such features by the grid.

CONCLUSIONS

A three-dimensional, Eulerian, fixed-grid model has
been developed to examine fingering and splashing
behaviour during droplet impact against a solid sur-
face. The model employs a volume tracking technique
to follow the free surface, and treats surface tension
in a continuous manner. Equations are discretized
on a Cartesian grid, which unfortunately imposes an
unwanted symmetry onto the results. An alternative
approach might be to discretize the equations on a
cylindrical mesh, but at the expense of limiting the
applicability of the model to normal impacts only.
Results of two simulations are compared with experi-
ment, and demonstrate the capability of the model to
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Figure 1: Simulation views and photographs of a 2.7
mm tin droplet impacting at 1 m/s. Results pre-
sented at 2, 5, 8 and 12 ms following impact.

predict fingering and splashing, and to yield reason-
able estimates of the number of fingers which form.
Results of a third simulation are presented as an ex-
ample of the grid resolution required as the number
of fingers increases. Simulations on finer resolutions
are planned.
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