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ABSTRACT
We present an approach to modeling incompressible inter-

facial flows on fixed meshes that yields solutions at any density
ratio. There are two aspects of the methodology that are cru-
cial for obtaining accurate high density ratio solutions: a con-
sistent approach to mass and momentum conservation, by using
mass flux information from an interface advection algorithm as
the basis for the momentum advection calculation, and a careful
evaluation of pressure gradients near the interface. Our partic-
ular implementation couples a volume tracking algorithm with
a predictor/projection solution of the flow equations on unstruc-
tured meshes. We present the methodology, and then the results
of several calculations.

INTRODUCTION
A key characteristic of incompressible interfacial flows is

the density ratio between fluids. For liquid/gas flows a typical
value is 103-104, as is the case for water or molten metal flows
in an atmospheric air environment. The ambient gas does not al-
ways play a significant role in the dynamics of the heavy fluid,
and the influence diminishes as the density ratio increases. But
there are nonetheless phenomena where the gas phase will af-
fect the liquid even at very high density ratios. Examples include
gas entrainment in a liquid phase, bubble dynamics, and aerody-
namic effects of a gas phase on a liquid.

�Address all correspondence to this author.

There are today an impressive variety of techniques used to
model interfacial flows (Scardovelli and Zaleski, 1999; Tryggva-
son et al., 2001; Osher and Fedkiw, 2001; Hou et al., 2001), and
yet a review of the literature leads one to conclude that many im-
plementations of various algorithms encounter difficulties as the
density ratio increases. Some will suggest that an algorithm has
been designed to yield solutions for a particular range of density
ratios, and so dismiss the fact that the algorithm fails to model
other regimes. We would argue, on the other hand, that a high
density ratio capability is a desirable characteristic of any algo-
rithm, and that the ability (or not) of a model to yield solutions
for such flows tells us much about the algorithm itself.

We focus our attention in this paper on Eulerian (fixed
grid) schemes using an immersed interface method to solve for
arbitrarily-complex interface topologies. There are two aspects
of such a model that we have found to be required for modeling
high density ratio flows. The first is a tighter coupling of the in-
terface advection algorithm to the flow solver. We impose a con-
sistency between mass (interface advection) and momentum (the
flow solver) conservation, by using the mass fluxes calculated by
the interface advection algorithm as the basis for the momentum
advection calculation performed by the flow solver. This is in
contrast to most approaches of using an interface advection al-
gorithm strictly to move an interface with a given velocity field,
and then solving for velocities independent of any mass flux in-
formation that the interface advection algorithm might provide
(Scardovelli and Zaleski, 1999; Tryggvason et al., 2001; Osher

1 Copyright  2002 by ASME



and Fedkiw, 2001). The idea of consistency between mass and
momentum conservation isn’t new; (Rudman, 1998) used such
an approach in a staggered grid scheme on a cartesian mesh. But
because the mass and momentum control volumes are staggered,
Rudman was forced to introduce a subgrid mesh (twice as fine
in each of the coordinate directions) on which to solve for mass
conservation, in order to obtain mass fluxes across the faces of
the momentum control volumes. We present in this paper a col-
located scheme (all fluid variables reside at cell centers) that al-
leviates this restriction, and hence makes it easier to enforce con-
sistency between mass and momentum conservation.

The second aspect that is crucial is the careful evaluation
of pressure gradients used to enforce solenoidality. Consider for
a moment a simple hydrostatic problem, of two fluids of very
different densities one atop the other. The resulting pressure dis-
tribution may be continuous, but ∇P at the interface is not, and
any calculation of ∇P must recognize and respect the disconti-
nuity. The difficulty is not usually apparent in the heavy fluid,
but rather in the light, which can be dramatically affected by er-
roneous local estimates of ∇P.

In what follows, we present a brief overview of the equations
and of our particular algorithm, followed by the results of several
simulations.

FORMULATION
We begin with equations of conservation of mass and mo-

mentum. To simplify the presentation, we choose to neglect both
viscous and surface tension effects, although we have performed
calculations that include such phenomena:

∂ρ
∂t

�∇ � �ρu� � 0 (1)

∂�ρu�
∂t

�∇ � �ρuu� ��∇p�ρg (2)

u represents velocity, ρ density, p pressure, and g the gravita-
tional acceleration.

Although individual fluids are incompressible, we consider
multiple immiscible fluids (of different densities) within a do-
main, and so retain ρ within the bracketed terms on the LHS of
equation 2. However, as the density of any fluid particle remains
constant,

Dρ
Dt

� 0 (3)

and so:

∇ �u � 0 (4)

Equation 2, then, is an Eulerian expression of conservation of
fluid momentum, subject to the incompressibility constraint em-
bodied by equation 4. Equation 1 describes the transport of den-
sity, or put more simply, the transport of different fluids within
the domain.

We discretize equation 2 to first order in time, and by intro-
ducing an interim “predicted” velocity u�, divide the resulting
equation in two:

ρn�1u��ρnun

∆t
��∇ � �ρuu�n (5)

ρn�1un�1 �ρn�1u�

∆t
��∇Pn�1�ρn�1g (6)

Equation 5 is an explicit formula for u�, and includes all forces
except gravity and pressure gradients. Combining equations 5
and 6 exactly reproduces the time discretization of equation 2; no
additional approximation results from this decomposition, which
is made simply for computational convenience. Equation 6 re-
lates un�1 to u�; combining equation 6 with equation 4 yields:

∇ �
∇Pn�1

ρn�1 � ∇ � �
u�

∆t
�g� (7)

We solve equation 7 for Pn�1, and complete the timestep by eval-
uating un�1 via equation 6.

We now present details of the algorithm used to solve equa-
tions 1 and 5-7. Our implementation is on an unstructured hex-
ahedral mesh, with the primary variables u and p located at cell
centers. To assess solenoidality, we also calculate the velocity
field at cell face centroids, designated u f .

Given values of un, un
f , and pn, we advance the solution to

time n�1 in the following manner:

1. Solve equation 1 for ρn�1 using un
f . We begin by defining

a volume fraction fk as the fraction of each cell volume V
occupied by fluid k:

fk �Vk�V (8)

A cell density is then related to the volume fractions via:

ρ �∑ fkρk (9)

Equation 1 may then be written:

∂� fkρk�

∂t
�∇ � � fkρku� � 0 (10)
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and since each ρk is constant, we obtain an evolution equa-
tion for the fk:

∂ fk

∂t
�∇ � � fku� � 0 (11)

We utilize a multidimensional PLIC (piecewise linear inter-
face calculation (Rider and Kothe, 1998)) volume tracking
algorithm for unstructured meshes (Kothe et al., 1999) to
solve equation 11 for f n�1

k . The algorithm consists of two
steps: a planar reconstruction of fluid-fluid interfaces within
a cell, corresponding exactly to the f n

k and to estimates of
the orientations of the interfaces (evaluated as gradients of
the f n

k ); and then a geometric calculation of volume fluxes
of different materials across cell faces.

2. Evaluate ∇ � �ρuu�n and then u� utilizing the volume flux in-
formation of step 1. Consider Figure 1, that illustrates the
advection of material across the right face of a cell contain-
ing an interface between two fluids. The advected volume
is:

δVf � ∆tA f u f � n̂ f (12)

where u f � n̂ f is the component of the solenoidal face veloc-
ity u f normal to the face, and A f is the face area. Discretiz-
ing the advection term of equation 2, we obtain:

∆t
�

∇ � �ρuu�ndV � ∑
f

δVf �ρu�n
f (13)

The volume tracking algorithm calculates the subvolumes
δVk� f within the flux volume δV f (see Figure 1), and we in-
troduce fk� f to represent the volume fraction of δV f associ-
ated with a particular material k:

fk� f �
δVk� f

δVf
(14)

Multiplying the δVk� f by corresponding densities yields the
mass of each material k crossing a face f :

Mk� f � ρkδVk� f (15)

and equation 13 may then be written in a way that is wholly
consistent with mass advection:

∆t
�

∇ � �ρuu�ndV � ∑
f

∑
k

Mk� f �u�
n
f (16)
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Figure 1. THE ADVECTION OF MATERIAL ACROSS THE FACE OF

A CELL CONTAINING AN INTERFACE BETWEEN TWO FLUIDS. THE

VOLUME TRACKING ALGORITHM CALCULATES THE INDIVIDUAL

FLUX VOLUMES V1� f and V2� f .

Note that �u�n
f is the estimate of the advected momentum

per unit mass. For the purposes of this paper, we have
chosen this to be a simple upwind value.

3. Interpolate u� and ρn�1 to cell faces to obtain u�

f and ρn�1
f .

Velocity interpolation is done using a least squares linear
reconstruction technique similar to that of (Barth, 1993), as
we assume that velocity does not vary discontinuously near
an interface. The resulting stencil typically encompasses
more than just a couple of cells. Density, on the other hand,
varies discontinuously, and so we limit the size of the stencil
by calculating a face density as a simple average of cell
densities on either side of a face.

4. Solve equation 7 for the cell-centered Pn�1, where diver-
gences are calculated by summing over cell faces, and ∇P f

is calculated from a stencil corresponding to that of the den-
sity interpolation to faces. Equation 6 is then used to calcu-
late a solenoidal (to machine precision) face velocity field:

un�1
f � u�

f �∆t�
∇Pn�1

f

ρn�1
f

�g� (17)

5. Finally, interpolate �∇Pn�1
f �ρn�1

f � g� to cell centers in

order to obtain un�1 from u� via equation 6.

DISCUSSION
The algorithm as described contains two elements that are

crucial for the solution of high density ratio flows. The first is
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Figure 2. THE CELL DENSITY ρ AS AN INTERFACE PASSES

THROUGH. ON THE LEFT, A CELL NEARLY FILLED WITH HEAVY

FLUID; ON THE RIGHT, AFTER A SINGLE TIMESTEP, THE CELL

NEARLY EMPTY.

the use of the volume flux information provided by the volume
tracking algorithm to calculate mass fluxes across faces. It is a
simple idea, and yet appears to have been introduced only re-
cently (Rudman, 1998). The reason for this would seem to be
related to the fact that most implementations of volume tracking
(or VOF) algorithms have been on staggered grids. Until Rud-
man introduced the subgrid mesh for mass advection, in order
to overlap the mass and momentum control volumes, the idea of
consistency was apparently not obvious.

The usual alternative to imposing consistency has been to
effectively decouple mass from momentum advection, and eval-
uate ∑k Mk� f for the momentum calculation simply by multiply-
ing some estimate of face density by the fluid volume crossing
the face during the timestep. Such an approach is likely fine at
low density ratios, when the change of momentum of an inter-
face cell is defined as much by local variations in velocity as it
by the difference in densities between fluids. But as the density
ratio increases, so does the importance of coupling the mass and
momentum calculations. Consider Figure 2, where we depict the
state of a cell as an interface passes through. At time n, the cell
is nearly filled with a heavy fluid; at the end of the timestep, the
reverse is true, and the cell density has changed by two orders or
magnitude. If we assume that the velocity distribution in neigh-
boring cells and across the interface is relatively continuous, as
will often (but not always - a strong shear flow is one counter-
example) be the case, then the accuracy of the momentum calcu-
lation is much more a function of the estimates of ∑k Mk� f than
of the advected velocities. Any discrepancy between the net sum
of mass leaving a cell, ∑ f ∑k Mk� f , and the change in cell mass
�ρn�1 �ρn�V , will result in significant errors in the estimate of
the interim cell velocity u�.

It is worth noting that this discussion of mass and momen-
tum coupling presumes that we solve for momentum conserva-
tion via an expression like equation 2. But even this has not
always been the case for volume tracking codes. Instead, it has

been common practice (e.g. Nichols et al., 1980; Kothe et al.,
1991) to solve for conservation of specific momentum, or veloc-
ity, by dividing both sides of equation 2 by ρ, on the grounds that
the fluids are incompressible. Such an argument would apply in
regions removed from fluid interfaces, but certainly not in those
cells through which interfaces pass. Such an approach would
most surely become problematic as the density ratio increases.

We have implemented this methodology in a volume track-
ing context, in which volume (and mass) fluxes across cell faces
are explicitly calculated. Other interface advection algorithms,
such as level sets (Osher and Fedkiw, 2001) or front track-
ing (Tryggvason et al., 2001), for example, do not calculate vol-
ume fluxes in as explicit a manner, and so an implementation of
an approach such as the one presented here seems difficult. How-
ever, an evaluation of consistency would be of interest; namely,
what is the difference between cell density change evaluated via
the interface advection algorithm and the net sum of mass exiting
a cell, as used to evaluate momentum advection:

ρn�1�ρn�
∑ f ∑k Mk� f

V
(18)

Although we have chosen to ignore viscous and surface ten-
sion effects, they are obviously important to modeling interfacial
flows. The usual approach is to evaluate such terms explicitly
on the RHS of equation 5. When incorporated into the algorithm
presented here, it is crucial that these terms be evaluated using the
time n�1 density distribution. The reason for this is most easily
explained by returning to Figure 2. Momentum advection, now
consistent with mass, removes momentum from the cell in pro-
portion to the mass removed. When a cell is emptied, or nearly
emptied, of a heavy fluid, there remain very small amounts of
mass and momentum relative to what was in the cell at the be-
ginning of the timestep. Momentum fluxes due to viscous, sur-
face tension, and body force terms must then be in proportion to
the momentum that is left in the cell. For example, a body force
based on the original cell mass results in a completely unrealistic
acceleration of the remaining fluid.

Turning to the calculation of Pn�1, we readily admit that
our approach to evaluating ρ f and ∇Pf are not appropriate on
meshes that stray far from orthogonality. We are in the process
of implementing a more sophisticated approach. What we have
learned, however, is that there must be a consistency between the
stencils. Neither ρ nor ∇P is continuous across a fluid interface,
even if the configuration is a simple hydrostatic one. However, if
we assume velocity to be relatively continuous, then so is ∇P�ρ.
Evaluating ρ and ∇P via different interpolations, for example,
leads to difficulties that we no longer encounter when the stencils
are the same.

Finally, we have seen no signs of pressure field decoupling, a
common ailment of cell-centered schemes. Although the imple-
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mentation is not explicit, the algorithm contains what is a vari-
ation of the (Rhie and Chow, 1983) solution to the decoupling
problem. Interim velocities u� that do not yet contain a pressure
correction are interpolated to cell faces. Pressure gradient cor-
rections are then calculated at cell faces via small stencils, and
the resulting gradients, divided by face densities, are averaged
to obtain a cell-centered correction. The result is not prone to
checkerboarding.

RESULTS

Figure 3 illustrates a simple 2D test of our algorithm. We
consider the motion of a drop (cylinder) in an ambient fluid, for
different density ratios from one to 109, and illustrate five sub-
sequent interfaces for each case. The drop is assigned an initial
non-zero velocity; the initial ambient fluid velocity is set to zero.
We consider neither viscosity nor surface tension effects. Of in-
terest is the deformation of the drop due to its interaction with
the surrounding fluid: the lower the density ratio, the stronger
the deformation. At high ratios, as the influence of the ambi-
ent fluid diminishes, the solution eventually approaches that of a
pure translation of a drop in a void. Note that even at the high-
est ratios, the results show a slight deviation from a circle; these,
however, are related to splitting errors in the tracking of the inter-
face, and not to the flow solution, as the same deviations appear
even when we impose the initial velocity field on the simulation,
rather than solve for it.

Figure 4 illustrates four views of a 2D collapsing column
simulation, calculated on a 2678 cell triangle mesh. The simula-
tion parameters correspond to the experimental results of (Martin
and Moyce, 1952). The density ratio is 800, corresponding to a
water/air calculation. The results, however, are little affected by
the density ratio: we ran the same calculation at a ratio of 106,
and the results were indistinguishable from those of Figure 4.
Figure 5 is a plot of the non-dimensional front position versus
time. The results agree well with the data of Martin and Moyce;
the difference is of a similar magnitude to that reported elsewhere
(e.g. Maronnier et al., 1999; Lock et al., 1998).

Finally, Figures 6 and 7 present views of two simulations of
the filling of a hemisphere: Figure 6 with a fluid 1000 times as
heavy as the fluid initially in the domain, Figures 7 with a fluid a
million times as heavy. The domain is vented near the top of the
sphere, to allow the light fluid to escape as the heavy fluid pours
in. The results are obviously qualitative, and unlike the results
of Figure 4, show slight differences in behaviour as the density
ratio changes, because the relative motion of the heavy and light
fluids is now much more complex. Nevertheless, the results are
very similar, and another demonstration of the efficacy of this
approach.

((a) (d)

(b)

(c) (f)

(e)

Figure 3. THE MOTION OF A 2D DROP, WITH INITIAL VELOCITY (u,v)

= (2,1), IN AN INITIALLY STATIC AMBIENT FLUID, FOR VARIOUS DEN-

SITY RATIOS: (a) 1 (b) 10 (c) 100 (d) 1000 (e) 106 (f) 109.

CONCLUSIONS
Based on the work of (Rudman, 1998), we have developed

a high density ratio incompressible flow model implemented on
a collocated mesh. We have identified two aspects of the algo-
rithm that are crucial for the solution of such flows: a consistent
approach to mass and momentum advection, and a careful eval-
uation of pressure gradients near an interface. The algorithm has
no difficulty solving for flows of any density ratio.

We intend to develop this methodology further. Our plans in-
clude: the development of a more sophisticated interpolation for
∇P and ρ; the extension of this algorithm to flow in the presence
of void (zero density) fluid and moving solid boundaries; and a
comprehensive verification of the algorithm, especially when we
consider viscous and surface tension effects.
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Figure 6. FOUR VIEWS DURING THE FILLING OF A VENTED HEMI-

SPHERE. DENSITY RATIO 1000.

Figure 7. FOUR VIEWS DURING THE FILLING OF A VENTED HEMI-

SPHERE. DENSITY RATIO 106.
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