
CSME 2004 Forum 1

Volume Tracking on Adaptively Refined Grids with
Curvature Based Refinement

Mayank Malik1, Markus Bussmann2

Department of Mechanical & Industrial Engineering, University of Toronto

1mayank.malik@utoronto.ca, 2bussmann@mie.utoronto.ca

We present a piecewise-linear interface calculation (PLIC) volume tracking method implemented on an
adaptively-refined structured mesh, that one could incorporate into an adaptive interfacial flow solver to
accurately track interfaces characterized by a wide range of length scales and curvatures. The technique
uses adaptive hierarchical grids that are recursively subdivided on a Cartesian mesh, with a refinement
criterion related to the local curvature of an interface. Results are presented of the scheme, that requires
much less computational time than a uniform mesh to reach a given error norm. A new test case is also
presented, with features that are typical of multiscale interfacial flows.

1. INTRODUCTION
An important and challenging application of
CFD is interfacial and multiphase flows, that
involve multiple immiscible fluids separated by
one or more interfaces. These flows occur in
many natural and industrial processes, including
combustion, petroleum refining, many materials
processing techniques, and nuclear technologies
[1]. Numerical simulation is an important tool
for the investigation of such flows. What sets
such simulations apart from those of single phase
flows is the additional requirement of tracking
interfaces in space and time. Various tracking
methodologies have been developed, including
markers [2], level sets [3], and volume tracking
[4].

We focus in this paper on volume tracking
methods, that are popular and have been
successfully applied to the simulation of a
variety of interfacial flows. Rider and Kothe [4]
and Rudman [5] have written excellent reviews
of such methods, and so we present only a brief
overview here. Volume tracking methods have
their origin in algorithms exemplified by the
Volume of Fluid (VOF) scheme of Hirt and
Nichols [6], that represented interfaces in a
piecewise-constant manner, that manifested itself
as a stair-stepped representation of a curved
interface. Many well-known codes, including
SOLA-VOF [7] and until recently, FLOW-3D

[8], utilized such algorithms. Today, such
methods are largely considered obsolete, and
have been replaced by algorithms that
approximate an interface with a line (in 2D) or a
plane (in 3D) at any orientation to a mesh cell.
Such methods are referred to as piecewise-linear
interface calculation (PLIC) methods; examples
include the work of Youngs [9,10], Rider and
Kothe [4], and Scardovelli and Zaleski [11].

PLIC schemes have usually been designed for,
and implemented into, codes that utilize fixed
structured meshes. This can lead to difficulties
when simulating interfacial flows characterized
by features at different scales: for a given
computational expense, the results are usually
characterized by regions of the domain that are
under-resolved, and other regions that are
unnecessarily refined. As well, interfacial flows
often involve dramatically different fluids, the
properties of which can vary by orders of
magnitude. It is thus often appropriate to resolve
an interface more accurately than the domain far
from it.

Interfacial flow modelling is thus an obvious
candidate for the application of adaptive
refinement techniques. In this paper, we focus
on the volume tracking algorithm, and present
the implementation of a well-known PLIC
scheme on an adaptively-refined mesh. Rather
than resolve the interface to some uniform level,
as was presented recently [12], we utilize local

CSME 2004 Forum 2

curvature (that is a relative measure of interface
complexity), as our refinement criterion.

2. METHODOLOGY
We begin here by presenting a brief overview of
volume tracking on a uniform cartesian mesh:
the mathematical basis, and the numerical
methodology of Youngs [9]. We then present
our implementation of a similar algorithm on an
adaptive mesh, and discuss (i) why and how we
use a quadtree implementation for adaptive
refinement, (ii) the aspects of the implementation
that differ from that on a uniform mesh, and (iii)
the use of interface curvature as a refinement
criterion.

2.1. Mathematical Model

In volume tracking methods, an interface is not
explicitly tracked, but rather the fluid volume is
utilized as an indicator function for the interface.
Consider two fluids denoted as “dark” and
“light”. We define an existence function f that
has a value of one in the dark fluid, and a value
of zero in the light.

A standard advection equation governs the
evolution of f ; for a given flow field u

r
:

00 =⋅∇+

∂
∂

⇒=)fu(
t
f

Dt
Df r (1)

As we assume the flow to be incompressible:

0=⋅∇ u
r (2)

Equation (2) can be interpreted as a statement of
conservation of fluid volume, which then implies
conservation of the function f .

2.2. Uniform Mesh Volume Tracking

If we now consider a uniform two-dimensional
(2D) grid of dimension yxh ∆∆ == , we can
define a quantity ijf as follows:

∫ ∫= h hij dydx)y,x(fhf 2 (3)

ijf is the “volume fraction” of dark fluid in cell

(i,j). If 1=ijf , the cell contains only dark fluid;

if 0=ijf , only light fluid. In general, the
volume fraction of the dark fluid is:

10 ≤≤ ijf (4)

The corresponding fraction of light fluid is then
ijf−1 , and we identify an “interface cell” when:

10 << ijf (5)

It is these volume fractions that implicitly
identify an interface; the evolution of the volume
fractions is governed by equation (1). A PLIC
volume tracking algorithm is simply a geometric
(rather than algebraic) approach to solving
equation (1), and it generally consists of a two-
part procedure: a piecewise-linear reconstruction
of the interface from known volume fractions,
and a time marching, or advection, step.

Consider a 2D square domain of uniform cells.
In any interface cell, we reconstruct the interface
by a line:

0=+⋅ ρxn
rr

 (6)
or:

0=++ ρynxn yx (7)

For a given slope)n,n(yx , there exists only one
value of ρ that corresponds exactly to the
known volume fractions. Referring to Figure 1,
we calculate a cell-centered normal by averaging
normals calculated at the cell vertices, that are
each obtained from a simple four point stencil.
For example, the normal at the bottom left corner
of cell)j,i(is given by:

 []11112

1
2121 −−−− −−+=

−− j,ij,ij,ij,ix ffff
h

n
/j,/i

[]11112
1

2121
−−−− −−+=

−−
j,ij,ij,ij,iy ffff

h
n

/j,/i

 (8)

i+1ii−1

j+1

j

j−1

_
n

Figure 1: The 3*3 stencil used to calculate the
normal for the cell (i,j).

For a given n
r

, the line constant ρ can then be
calculated analytically [5] or iteratively [4].

CSME 2004 Forum 3

With the interface reconstructed, the second step
is to advect the volume fractions. Following the
algorithm of Youngs [9], we employ an operator-
split time integration scheme, and integrate
separately in each of the dimensions (x,y). To
ameliorate anisotropic effects, we reverse the
order of advection each timestep, from (x,y) to
(y,x) and back.

The advection calculation from a time n to n+1
proceeds as follows. After advecting in one
dimension (in this case x), an interim volume
fraction field is calculated as:

*
ij

j,/ij,/ij,/ij,/iij
n
ij*

ij
V

th)fufu(Vf
f

∆21212121 −−++ −−
= (9)

where the interim cell volume is:

th)uu(VV j,/ij,/iij
*
ij ∆2121 −+ −−= (10)

Scaling the interim volume fractions by *

ijV

ensures that they remain bounded: 10 ≤≤ *
ijf .

The interim field is then reconstructed again, and
advected in the second direction:

ij

/j,i/j,i/j,i/j,i
*
ij

*
ijn

ij V

th)fvfv(Vf
f

∆212121211 −−+++
−−

= (11)

In equations (9) and (11), the f represent the
volume fractions fluxed across faces; these are
calculated geometrically, as depicted in Figure 2.

udt

u

Figure 2: Advection between two cells at the
same refinement level.

2.3. Quadtree Grid Generation

The term quadtree [13] is used to describe a
class of hierarchical data structures that are based
on the principle of recursive decomposition of
space. Thus, quadtrees are ideally suited for an
adaptive refinement framework, and in the
context of volume tracking, allow us to
repeatedly refine parts of a domain based on the

value of some criterion. As an interface moves,
and the value of the refinement criterion
changes, so the quadtree can evolve in a dynamic
manner.

32103210

10

32

10

ROOT

2 3

2 3

10 LEVEL 2

LEVEL 1

LEVEL 0

ALL LEAF CELLS HERE

LEAFPARENT

PARENTLEAF

3210

Figure 3: An example of a three-level quadtree.

Figure 3 illustrates a quadtree structure. The
following is nomenclature associated with the
use of quadtrees:

Root: corresponds to the entire grid.
Cell: a square region in the grid.
Parent: a cell that has been subdivided into four
child cells.
Leaf Cell: a cell that is no further subdivided.
Level: the position of a cell in the grid hierarchy;
the root corresponds to level 0; each subsequent
level of refinement corresponds to a halving of
one or more cells; the dimension of a cell at level
L is 1/2L the dimension of the root cell.
Neighbours: the collection of all cells that adjoin
a given cell, sharing either a face or a vertex; we
use Samet’s [13] recursive algorithm to compute
neighbours.

2.4. Adaptive Mesh Volume Tracking

The introduction of adaptivity complicates two
aspects of a PLIC algorithm: the calculation of
normals, and the advection routine, because
neighbouring cells may be at different levels of
refinement. The explanations that follow, and
the results that are presented in this paper, reflect
a constraint that we have chosen to apply, that
neighbouring cells cannot differ by more than
one level of refinement.

CSME 2004 Forum 4

We begin by considering the calculation of
normals, and note that when a cell and all of its
neighbours are at the same level of refinement, a
normal is calculated via equation (8). But when
a cell (i,j) has one or more neighbours at a
different refinement level (e.g. as illustrated in
Figure 4, where one vertex neighbour is more
refined), then we calculate the cell-centred
normal by constructing an effective 3*3 stencil.

In particular, for the case of Figure 4, we
calculate the volume fraction of the (i-1,j-1)
parent cell, simply by averaging the volume
fractions of the four children. Referring to
Figure 5, this corresponds to calculating the
single volume fraction on the left from the four
on the right.

The flipside is that of a cell (i,j) with one or more
neighbours at a lower level of refinement. In this
case, we utilize the reconstruction of the coarse
neighbour to calculate the effective volume
fractions of four children, if they existed.
Referring again to Figure 5, this corresponds to
calculating the four volume fractions depicted in
the right schematic from the single fraction to the
left.

j+1

j

j−1

i+1ii−1

n
_

Figure 4: Calculating a normal for cell (i,j),
when neighbouring cells are further refined.
.

f=0.725

f=0.15f=0.8

f=1 f=0.95

Figure 5: Corresponding volume fractions
between a parent cell and its four child cells.

Note that to implement this approach to
calculating normals, we sweep the quadtree level
by level, computing normals in leaf cells at
successively finer levels.

1

2

u dt

1

2u

u

u dt

Figure 6: Advection between cells at different
levels of refinement.

Turning now to advection between cells at
different levels of refinement, we refer you to
Figure 6, that illustrates the situation. Velocities
are presumed to be known at all faces: 1u and

2u need not be the same, although the average
of the two will equal the left face velocity of the
larger cell to the right. Advection into a less
refined cell, as pictured in Figure 6, then consists
of two flux calculations. For the reverse
situation, two fluxed volume fractions are
calculated, one for each of the two more refined
cells that neighbour a coarser one.

2.5. Criterion for Refinement and
Coarsening

The criterion for refining or coarsening a cell is
related to the local curvature:

n̂κij ⋅−∇= (12)

that we can calculate simply from the vertex
normals of the cell (i,j), that are already known
from the calculation of the cell-centred normal.
The rationale for this choice of criterion relates
to the realization that to adequately resolve a
curved interface requires some minimum level of
resolution. At a simple level, a mesh must be
locally fine enough that the piecewise-linear
reconstructions are a reasonable estimate of the
actual interface topology in a cell.

The results presented in this paper were obtained
by relating each refinement level to a range of
curvatures. Procedures for refinement and
coarsening correspond to the techniques already
presented, illustrated in Figure 5.

Finally, note that obtaining accurate curvatures
from volume fractions is difficult. Average
values of curvature calculated over an interface
are usually correct, but single calculations are

CSME 2004 Forum 5

often approximate at best. We observed many
instances of a calculated curvature that indicated
the need for mesh coarsening; once coarsened,
the new value of curvature indicated that the cell
should be refined. As a result, we implemented a
loose version of the refinement criterion, and
only coarsened a cell when the change in
curvature was deemed appreciable.

3. RESULTS
We present results to four test problems, and
compare adaptive grid results with corresponding
results from uniform mesh calculations. All test
cases were calculated in a unit square domain,
with a timestep corresponding to a Courant
number of 0.4. Velocity fields are specified as
stream functions ψ ; velocity components u and
v may be calculated as:

x
ψv;

y
ψu

∂
∂

−=
∂
∂

= (13)

Two errors were calculated for each simulation:

∑

∑ −
=

ic ij

ic ij
o

ij
T
ij

ic A

)Aff(
L1 (14)

∑

∑ −
=

all ij

all ij
o

ij
T
ij

all A

)Aff(
L1 (15)

The subscript ic refers to interface cells, and all
to all cells; the superscripts o and T to initial and
final values, respectively; ijA represents the area
of the cell (i,j). In all cases, the tests were
constructed to return the fluid to its initial
position, to facilitate the error evaluation.
Finally, note that the two errors are
fundamentally different: allL1 includes the
inherent decrease in total interface cell area with
mesh refinement, where icL1 sums strictly over
interface cells, and so represents the average
change in an interfacial volume fraction between
the initial and final state.

3.1. Solid Body Rotation

The first test is one full rotation of an ellipse
(major axis diameter of 0.3, minor diameter of
0.1) centred in the domain, and illustrated in
Figure 7. Uniform mesh calculations were run at
grid resolutions of 32*32, 64*64 and 128*128;
the adaptive calculation refined the interface
according to the following criteria: 6<κ , level

4; 156 << κ , level 5; 3015 << κ , level 6; κ<30 ,
level 7. Note that level 4 corresponds to a
uniform 16*16 mesh, and level 7 to a 128*128.
Table 1 details the errors. The average number
of interface cells is an indication of relative mesh
resolution. The errors associated with the
adaptive simulation are in line with the uniform
mesh errors.

MESH
L1

(INTERFACE
ERROR)

L1 (ALL
CELLS

ERROR)

AVERAGE #
INTERFACE

CELLS
32*32 0.0766 0.00434 54
64*64 0.04285 0.001192 108

128*128 0.02152 0.000271 217
ADAPTIVE 0.03716 0.00104 155

Table 1: Results for the solid body rotation test.

3.2. Elongational Field

Next, we consider an ellipse centered at (0.5,0.5)
but with a major axis diameter of 0.4, such that
the aspect ratio is 4:1. The stream function is:

xyψ = (16)

This field collapses the ellipse into a circle, then
stretches it into an ellipse along the other
coordinate axis. We then reverse the velocities
to return the ellipse to its initial position. Table
2 presents a summary of the error norms. Note
that in this and for the final two test cases, the

icL1 for the adaptive simulation is actually less
than the same error associated with the finest
uniform mesh.

GRID
TYPE

L1
(INTERFACE

ERROR)

L1 (ALL
CELLS

ERROR)

AVERAGE #
INTERFACE

CELLS
32*32 0.016329 0.00108 55
64*64 0.01068 0.000354 110

128*128 0.008912 0.000143 220
ADAPTIVE 0.00522 0.000229 144

Table 2: Results for the elongational field.

3.3. Slotted Disk

This is a variation of a test case that is often
referenced [5]. Consider a circle of radius 0.25,
centered at (0.5,0.5), with a slot of a width 0.125.
We rotate the slotted disk one full revolution,
then reverse the velocity field for another.
Results are illustrated in Figure 9; error norms
are tabulated in Table 3.

CSME 2004 Forum 6

GRID
TYPE

L1
(INTERFACE

ERROR)

L1 (ALL
CELLS

ERROR)

AVERAGE
INTERFACE

CELLS
32*32 0.10371 0.00861 81
64*64 0.09624 0.004238 164

128*128 0.07612 0.001608 330
ADAPTIVE 0.07535 0.002193 271

Table 3: Results for the slotted disk.

The mesh was refined according to the following
criteria: 5<κ , level 4; 105 << κ , level 5;

1510 << κ , level 6; κ<15 , level 7.

3.4. Star Stretching

The initial geometry for the final test problem is
quite different from those of the first three. We
consider a star-like shape which has a large
range of curvature, and then advect the shape
with the following stream function:

3

3
22 yxyyx ++=ψ (17)

GRID
TYPE

L1
(INTERFACE

ERROR)

L1 (ALL
CELLS

ERROR)

AVERAGE
INTERFACE

CELLS
32*32 0.10952 0.0077 57
64*64 0.09701 0.00341 123

128*128 0.08467 0.001478 271
ADAPTIVE 0.051582 0.001763 221

Table 4: Results for the star stretching.

Results are presented in Figure 10 and in Table
4. This is a more demanding test than the
previous three, especially because of the fine tips
at the edge of the star, that are difficult to resolve
even on a 128*128 mesh. However, such
features, and such a range of curvatures, are not
uncommon in complex multiphase flows, and so
a test such as this can serve to more fully
exercise a tracking algorithm.

4. SUMMARY
We have implemented a PLIC volume tracking
scheme onto an adaptively-refined Cartesian
mesh. Complications that result from the
adaptivity make the implementation only a little
more complex than that on a uniform mesh. We
then utilize estimates of local interface curvature
as a refinement criterion, in order to optimize the
use of available resources. Finally, we present
the results of four test cases, and demonstrate

that not only do the adaptive results compare
well with uniform mesh results, but in some
cases errors are actually lower on an adaptive
mesh than on a finer uniform one.

5. REFERENCES
[1] M. Ishii and N. Zuber, Drag coefficient and
relative velocity in bubbly, droplet or particulate
flows, AIChE J., vol. 25, pp. 843, 1979.

[2] S. Popinet and S. Zaleski, A front-tracking
algorithm for accurate representation of surface
tension, Int. J. Num. Methods Fluids, vol 30, pp.
775-793, 1999.

 [3] J.A. Sethian, Level Set Methods, Cambridge
University Press, 1996.

 [4] W.J. Rider and D.B. Kothe, Reconstructing
volume tracking, J. Comp. Phys., vol. 141, pp.
112-152, 1998.

 [5] M. Rudman, Volume-tracking methods for
interfacial flow calculations, Int. J. Num.
Methods Fluids, vol. 24, pp. 671-691, 1997.

 [6] C.W. Hirt and B.D. Nichols, Volume of
Fluid (VOF) method for the dynamics of free
boundaries, J. Comp. Phys., vol. 39, pp. 201-225,
1981.

 [7] B.D. Nichols, C.W. Hirt, and R.S.
Hotchkiss, SOLA-VOF: A solution algorithm for
transient fluid flow with multiple free
boundaries, LASL, Report LA-8355, 1980.

 [8] Flow Science Inc., Santa Fe, NM.

 [9] D.L. Youngs, Time-dependent multi-
material flow with large fluid distortion, in
Numerical Methods for Fluid Dynamics,
Academic Press, New York, 1982.

 [10] D.L. Youngs, An interface tracking method
for a 3D Eulerian hydrodynamics code, AWRE,
Report 44/92/35, 1984.

 [11] R. Scardovelli and S. Zaleski, Direct
numerical simulation of free-surface and
interfacial flows, Annual Review of Fluid
Mechanics, vol. 31, pp. 567-603, 1999.

 [12] D. Greaves, A quadtree adaptive method
for simulating fluid flows with moving
interfaces, J. Comp. Phys., vol. 194, pp. 35-56,
2004.

 [13] H. Samet. Applications of spatial data
structures: computer graphics, image processing,
and GIS. Addison-Wesley, 1990.

CSME 2004 Forum 7

Figure 7: Ellipse rotation. The upper left plot illustrates the ellipse initially refined to level 7 (to
accurately initialize the volume fractions); the upper right plot illustrates the actual initial refinement.

T=320

T=0

T=640

T=960 T=1280

T=0

CSME 2004 Forum 8

Figure 8: An elongational velocity field. The initial ellipse was stretched until t=560, and then the velocity
field was reversed until t=1120.

T=0

T=280 T=560

T=840 T=1120

T=0

CSME 2004 Forum 9

Figure 9: A slotted disk rotated 360 degrees clockwise, then 360 degrees counter-clockwise.

T=320T=0 T=640

T=1280 T=960 T=1600

T=2240 T=1920 T=2560

CSME 2004 Forum 10

Figure 10: Star stretching, at grid resolutions of 32*32, 64*64, 128*128, and on an adaptive grid.

T=0 T=0 T=0 T=0

T=500

T=1000

T=1500

T=2000

T=1000

T=1500

T=2000

T=500T=250 T=125

T=500

T=750

T=1000

T=250

T=375

T=500

