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We present a piecewise-linear interface calculation (PLIC) volume tracking method implemented on an 
adaptively-refined structured mesh, that one could incorporate into an adaptive interfacial flow solver to 
accurately track interfaces characterized by a wide range of length scales and curvatures.  The technique 
uses adaptive hierarchical grids that are recursively subdivided on a Cartesian mesh, with a refinement 
criterion related to the local curvature of an interface.  Results are presented of the scheme, that requires 
much less computational time than a uniform mesh to reach a given error norm.  A new test case is also 
presented, with features that are typical of multiscale interfacial flows. 

 

1. INTRODUCTION 
An important and challenging application of 
CFD is interfacial and multiphase flows, that 
involve multiple immiscible fluids separated by 
one or more interfaces.  These flows occur in 
many natural and industrial processes, including 
combustion, petroleum refining, many materials 
processing techniques, and nuclear technologies 
[1].  Numerical simulation is an important tool 
for the investigation of such flows.  What sets 
such simulations apart from those of single phase 
flows is the additional requirement of tracking 
interfaces in space and time.  Various tracking 
methodologies have been developed, including 
markers [2], level sets [3], and volume tracking 
[4]. 
 
We focus in this paper on volume tracking 
methods, that are popular and have been 
successfully applied to the simulation of a 
variety of interfacial flows.  Rider and Kothe [4] 
and Rudman [5] have written excellent reviews 
of such methods, and so we present only a brief 
overview here.  Volume tracking methods have 
their origin in algorithms exemplified by the 
Volume of Fluid (VOF) scheme of Hirt and 
Nichols [6], that represented interfaces in a 
piecewise-constant manner, that manifested itself 
as a stair-stepped representation of a curved 
interface.  Many well-known codes, including 
SOLA-VOF [7] and until recently, FLOW-3D 

[8], utilized such algorithms.  Today, such 
methods are largely considered obsolete, and 
have been replaced by algorithms that 
approximate an interface with a line (in 2D) or a 
plane (in 3D) at any orientation to a mesh cell.  
Such methods are referred to as piecewise-linear 
interface calculation (PLIC) methods; examples 
include the work of Youngs [9,10], Rider and 
Kothe [4], and Scardovelli and Zaleski [11]. 
 
PLIC schemes have usually been designed for, 
and implemented into, codes that utilize fixed 
structured meshes.  This can lead to difficulties 
when simulating interfacial flows characterized 
by features at different scales:  for a given 
computational expense, the results are usually 
characterized by regions of the domain that are 
under-resolved, and other regions that are 
unnecessarily refined.  As well, interfacial flows 
often involve dramatically different fluids, the 
properties of which can vary by orders of 
magnitude.  It is thus often appropriate to resolve 
an interface more accurately than the domain far 
from it. 
 
Interfacial flow modelling is thus an obvious 
candidate for the application of adaptive 
refinement techniques.  In this paper, we focus 
on the volume tracking algorithm, and present 
the implementation of a well-known PLIC 
scheme on an adaptively-refined mesh.  Rather 
than resolve the interface to some uniform level, 
as was presented recently [12], we utilize local 
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curvature (that is a relative measure of interface 
complexity), as our refinement criterion. 

2. METHODOLOGY 
We begin here by presenting a brief overview of 
volume tracking on a uniform cartesian mesh:  
the mathematical basis, and the numerical 
methodology of Youngs [9].  We then present 
our implementation of a similar algorithm on an 
adaptive mesh, and discuss (i) why and how we 
use a quadtree implementation for adaptive 
refinement, (ii) the aspects of the implementation 
that differ from that on a uniform mesh, and (iii) 
the use of interface curvature as a refinement 
criterion. 
 
2.1.  Mathematical Model 
 
In volume tracking methods, an interface is not 
explicitly tracked, but rather the fluid volume is 
utilized as an indicator function for the interface.  
Consider two fluids denoted as “dark” and 
“light”.  We define an existence function f  that 
has a value of one in the dark fluid, and a value 
of zero in the light. 
 
A standard advection equation governs the 
evolution of f ; for a given flow field u

r
: 
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As we assume the flow to be  incompressible: 
 

0=⋅∇ u
r                                  (2) 

 
Equation (2) can be interpreted as a statement of 
conservation of fluid volume, which then implies 
conservation of the function f . 
 
2.2.  Uniform Mesh Volume Tracking 
 
If we now consider a uniform two-dimensional 
(2D) grid of dimension yxh ∆∆ == , we can 
define a quantity ijf  as follows: 
 

∫ ∫= h hij dydx)y,x(fhf 2                 (3) 
 

ijf  is the “volume fraction” of dark fluid in cell 

(i,j).  If 1=ijf , the cell contains only dark fluid; 

if 0=ijf , only light fluid.  In general, the 
volume fraction of the dark fluid is: 
 

10 ≤≤ ijf                           (4) 

The corresponding fraction of light fluid is then 
ijf−1 , and we identify an “interface cell” when: 

 
10 << ijf                           (5)  

 
It is these volume fractions that implicitly 
identify an interface; the evolution of the volume 
fractions is governed by equation (1).  A PLIC 
volume tracking algorithm is simply a geometric 
(rather than algebraic) approach to solving 
equation (1), and it generally consists of a two-
part procedure:  a piecewise-linear reconstruction 
of the interface from known volume fractions, 
and a time marching, or advection, step. 
 
Consider a 2D square domain of uniform cells.  
In any interface cell, we reconstruct the interface 
by a line: 

0=+⋅ ρxn
rr

                          (6) 
or: 

0=++ ρynxn yx                     (7) 
 

For a given slope )n,n( yx , there exists only one 
value of ρ  that corresponds exactly to the 
known volume fractions.  Referring to Figure 1, 
we calculate a cell-centered normal by averaging 
normals calculated at the cell vertices, that are 
each obtained from a simple four point stencil.  
For example, the normal at the bottom left corner 
of cell )j,i(  is given by: 
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Figure 1: The 3*3 stencil used to calculate the 
normal for the cell (i,j). 
 

For a given n
r

, the line constant ρ  can then be 
calculated analytically [5] or iteratively [4]. 
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With the interface reconstructed, the second step 
is to advect the volume fractions.  Following the 
algorithm of Youngs [9], we employ an operator-
split time integration scheme, and integrate 
separately in each of the dimensions (x,y).  To 
ameliorate anisotropic effects, we reverse the 
order of advection each timestep, from (x,y) to 
(y,x) and back. 
 
The advection calculation from a time n to n+1 
proceeds as  follows.  After advecting in one 
dimension (in this case x), an interim volume 
fraction field is calculated as: 
 

*
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where the interim cell volume is: 
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Scaling the interim volume fractions by *

ijV  

ensures that they remain bounded: 10 ≤≤ *
ijf .  

The interim field is then reconstructed again, and 
advected in the second direction: 
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In equations (9) and (11), the f  represent the 
volume fractions fluxed across faces; these are 
calculated geometrically, as depicted in Figure 2. 
 

udt

u

 
Figure 2: Advection between two cells at the 
same refinement level. 
 
2.3.  Quadtree Grid Generation 
 
The term quadtree [13] is used to describe a 
class of hierarchical data structures that are based 
on the principle of recursive decomposition of 
space.  Thus, quadtrees are ideally suited for an 
adaptive refinement framework, and in the 
context of volume tracking, allow us to 
repeatedly refine parts of a domain based on the 

value of some criterion.  As an interface moves, 
and the value of the refinement criterion 
changes, so the quadtree can evolve in a dynamic 
manner. 
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Figure 3: An example of a three-level quadtree. 
 
Figure 3 illustrates a quadtree structure.  The 
following is nomenclature associated with the 
use of quadtrees: 
 
Root: corresponds to the entire grid. 
Cell: a square region in the grid. 
Parent: a cell that has been subdivided into four 
child cells. 
Leaf Cell: a cell that is no further subdivided. 
Level: the position of a cell in the grid hierarchy; 
the root corresponds to level 0; each subsequent 
level of refinement corresponds to a halving of 
one or more cells; the dimension of a cell at level 
L is 1/2L the dimension of the root cell. 
Neighbours: the collection of all cells that adjoin 
a given cell, sharing either a face or a vertex; we 
use Samet’s [13] recursive algorithm to compute 
neighbours. 
 
2.4.  Adaptive Mesh Volume Tracking 
 
The introduction of adaptivity complicates two 
aspects of a PLIC algorithm:  the calculation of 
normals, and the advection routine, because 
neighbouring cells may be at different levels of 
refinement.  The explanations that follow, and 
the results that are presented in this paper, reflect 
a constraint that we have chosen to apply, that 
neighbouring cells cannot differ by more than 
one level of refinement. 
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We begin by considering the calculation of 
normals, and note that when a cell and all of its 
neighbours are at the same level of refinement, a 
normal is calculated via equation (8).  But when 
a cell (i,j) has one or more neighbours at a 
different refinement level (e.g. as illustrated in 
Figure 4, where one vertex neighbour is more 
refined), then we calculate the cell-centred 
normal by constructing an effective 3*3 stencil. 
 
In particular, for the case of Figure 4, we 
calculate the volume fraction of the (i-1,j-1) 
parent cell, simply by averaging the volume 
fractions of the four children.  Referring to 
Figure 5, this corresponds to calculating the 
single volume fraction on the left from the four 
on the right. 
 
The flipside is that of a cell (i,j) with one or more 
neighbours at a lower level of refinement.  In this 
case, we utilize the reconstruction of the coarse 
neighbour to calculate the effective volume 
fractions of four children, if they existed.  
Referring again to Figure 5, this corresponds to 
calculating the four volume fractions depicted in 
the right schematic from the single fraction to the 
left. 
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Figure 4: Calculating a normal for cell (i,j), 
when neighbouring cells are further refined. 
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Figure 5: Corresponding volume fractions 
between a parent cell and its four child cells. 
 
Note that to implement this approach to 
calculating normals, we sweep the quadtree level 
by level, computing normals in leaf cells at 
successively finer levels. 
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Figure 6: Advection between cells at different 
levels of refinement. 
 
Turning now to advection between cells at 
different levels of refinement, we refer you to 
Figure 6, that illustrates the situation.  Velocities 
are presumed to be known at all faces:  1u  and 

2u  need not be the same, although the average 
of the two will equal the left face velocity of the 
larger cell to the right.  Advection into a less 
refined cell, as pictured in Figure 6, then consists 
of two flux calculations.  For the reverse 
situation, two fluxed volume fractions are 
calculated, one for each of the two more refined 
cells that neighbour a coarser one. 
 
2.5.  Criterion for Refinement and 
Coarsening 
 
The criterion for refining or coarsening a cell is 
related to the local curvature: 
 

n̂κij ⋅−∇=                            (12) 
 

that we can calculate simply from the vertex 
normals of the cell (i,j), that are already known 
from the calculation of the cell-centred normal.  
The rationale for this choice of criterion relates 
to the realization that to adequately resolve a 
curved interface requires some minimum level of 
resolution.  At a simple level, a mesh must be 
locally fine enough that the piecewise-linear 
reconstructions are a reasonable estimate of the 
actual interface topology in a cell. 
 
The results presented in this paper were obtained 
by relating each refinement level to a range of 
curvatures.  Procedures for refinement and 
coarsening correspond to the techniques already 
presented, illustrated in Figure 5. 
 
Finally, note that obtaining accurate curvatures 
from volume fractions is difficult.  Average 
values of curvature calculated over an interface 
are usually correct, but single calculations are 
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often approximate at best.  We observed many 
instances of a calculated curvature that indicated 
the need for mesh coarsening; once coarsened, 
the new value of curvature indicated that the cell 
should be refined.  As a result, we implemented a 
loose version of the refinement criterion, and 
only coarsened a cell when the change in 
curvature was deemed appreciable. 

3.  RESULTS 
We present results to four test problems, and 
compare adaptive grid results with corresponding 
results from uniform mesh calculations.  All test 
cases were calculated in a unit square domain, 
with a timestep corresponding to a Courant 
number of 0.4.  Velocity fields are specified as 
stream functions ψ ; velocity components u and 
v may be calculated as: 
 

            
x
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y
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∂
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Two errors were calculated for each simulation: 
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The subscript ic refers to interface cells, and all 
to all cells; the superscripts o and T to initial and 
final values, respectively; ijA  represents the area 
of the cell (i,j).  In all cases, the tests were 
constructed to return the fluid to its initial 
position, to facilitate the error evaluation.  
Finally, note that the two errors are 
fundamentally different:  allL1  includes the 
inherent decrease in total interface cell area with 
mesh refinement, where icL1  sums strictly over 
interface cells, and so represents the average 
change in an interfacial volume fraction between 
the initial and final state. 
 
3.1.  Solid Body Rotation 
 
The first test is one full rotation of an ellipse 
(major axis diameter of 0.3, minor diameter of 
0.1) centred in the domain, and illustrated in 
Figure 7.  Uniform mesh calculations were run at 
grid resolutions of 32*32, 64*64 and 128*128; 
the adaptive calculation refined the interface 
according to the following criteria:  6<κ , level 

4; 156 << κ , level 5; 3015 << κ , level 6; κ<30 , 
level 7.  Note that level 4 corresponds to a 
uniform 16*16 mesh, and level 7 to a 128*128.  
Table 1 details the errors.  The average number 
of interface cells is an indication of relative mesh 
resolution.  The errors associated with the 
adaptive simulation are in line with the uniform 
mesh errors. 
 

MESH 
L1 

(INTERFACE 
ERROR) 

L1 (ALL 
CELLS 

ERROR) 

AVERAGE # 
INTERFACE 

CELLS 
32*32 0.0766 0.00434 54 
64*64 0.04285 0.001192 108 

128*128 0.02152 0.000271 217 
ADAPTIVE 0.03716 0.00104 155 
 
Table 1: Results for the solid body rotation test. 
 
3.2.  Elongational Field 
 
Next, we consider an ellipse centered at (0.5,0.5) 
but with a major axis diameter of 0.4, such that 
the aspect ratio is 4:1. The stream function is: 
  

xyψ =                       (16) 
 

This field collapses the ellipse into a circle, then 
stretches it into an ellipse along the other 
coordinate axis.  We then reverse the velocities 
to return the ellipse to its initial position.  Table 
2 presents a summary of the error norms.  Note 
that in this and for the final two test cases, the 

icL1  for the adaptive simulation is actually less 
than the same error associated with the finest 
uniform mesh. 
 

GRID 
TYPE 

L1 
(INTERFACE 

ERROR) 

L1 (ALL 
CELLS 

ERROR) 

AVERAGE # 
INTERFACE 

CELLS 
32*32 0.016329 0.00108 55 
64*64 0.01068 0.000354 110 

128*128 0.008912 0.000143 220 
ADAPTIVE 0.00522 0.000229 144 
 
Table 2: Results for the elongational field. 
 
3.3.  Slotted Disk 
 
This is a variation of a test case that is often 
referenced [5].  Consider a circle of radius 0.25, 
centered at (0.5,0.5), with a slot of a width 0.125.  
We rotate the slotted disk one full revolution, 
then reverse the velocity field for another.  
Results are illustrated in Figure 9; error norms 
are tabulated in Table 3. 



CSME 2004 Forum 6 

 

GRID 
TYPE 

L1 
(INTERFACE 

ERROR) 

L1 (ALL 
CELLS 

ERROR) 

AVERAGE 
INTERFACE 

CELLS 
32*32 0.10371 0.00861 81 
64*64 0.09624 0.004238 164 

128*128 0.07612 0.001608 330 
ADAPTIVE 0.07535 0.002193 271 

Table 3: Results for the slotted disk. 

The mesh was refined according to the following 
criteria:  5<κ , level 4; 105 << κ , level 5; 

1510 << κ , level 6; κ<15 , level 7. 

3.4.  Star Stretching 
 
The initial geometry for the final test problem is 
quite different from those of the first three.  We 
consider a star-like shape which has a large 
range of curvature, and then advect the shape 
with the following stream function:  
 

3

3
22 yxyyx ++=ψ               (17) 

 
 

GRID 
TYPE 

L1 
(INTERFACE 

ERROR) 

L1 (ALL 
CELLS 

ERROR) 

AVERAGE 
INTERFACE 

CELLS 
32*32 0.10952 0.0077 57 
64*64 0.09701 0.00341 123 

128*128 0.08467 0.001478 271 
ADAPTIVE 0.051582 0.001763 221 

Table 4: Results for the star stretching. 

Results are presented in Figure 10 and in Table 
4.  This is a more demanding test than the 
previous three, especially because of the fine tips 
at the edge of the star, that are difficult to resolve 
even on a 128*128 mesh.  However, such 
features, and such a range of curvatures, are not 
uncommon in complex multiphase flows, and so 
a test such as this can serve to more fully 
exercise a tracking algorithm. 

4.  SUMMARY 
We have implemented a PLIC volume tracking 
scheme onto an adaptively-refined Cartesian 
mesh.  Complications that result from the 
adaptivity make the implementation only a little 
more complex than that on a uniform mesh.  We 
then utilize estimates of local interface curvature 
as a refinement criterion, in order to optimize the 
use of available resources.  Finally, we present 
the results of four test cases, and demonstrate 

that not only do the adaptive results compare 
well with uniform mesh results, but in some 
cases errors are actually lower on an adaptive 
mesh than on a finer uniform one. 

5.  REFERENCES 
[1] M. Ishii and N. Zuber, Drag coefficient and 
relative velocity in bubbly, droplet or particulate 
flows, AIChE J., vol. 25, pp. 843, 1979. 
 
[2] S. Popinet and S. Zaleski, A front-tracking 
algorithm for accurate representation of surface 
tension, Int. J. Num. Methods Fluids, vol 30, pp. 
775-793, 1999. 
 
 [3] J.A. Sethian, Level Set Methods, Cambridge 
University Press, 1996. 
 
 [4] W.J. Rider and D.B. Kothe, Reconstructing 
volume tracking, J. Comp. Phys., vol. 141, pp. 
112-152, 1998. 
 
 [5] M. Rudman, Volume-tracking methods for 
interfacial flow calculations, Int. J. Num. 
Methods Fluids, vol. 24, pp. 671-691, 1997.  
 
 [6] C.W. Hirt and B.D. Nichols, Volume of 
Fluid (VOF) method for the dynamics of free 
boundaries, J. Comp. Phys., vol. 39, pp. 201-225, 
1981. 
 
 [7] B.D. Nichols, C.W. Hirt, and R.S. 
Hotchkiss, SOLA-VOF: A solution algorithm for 
transient fluid flow with multiple free 
boundaries, LASL, Report LA-8355, 1980. 
 
 [8] Flow Science Inc., Santa Fe, NM. 
 
 [9] D.L. Youngs, Time-dependent multi-
material flow with large fluid distortion, in 
Numerical Methods for Fluid Dynamics, 
Academic Press, New York, 1982. 
 
 [10] D.L. Youngs, An interface tracking method 
for a 3D Eulerian hydrodynamics code, AWRE, 
Report 44/92/35, 1984. 
 
 [11] R. Scardovelli and S. Zaleski, Direct 
numerical simulation of free-surface and 
interfacial flows, Annual Review of Fluid 
Mechanics, vol. 31, pp. 567-603, 1999. 
 
 [12] D. Greaves, A quadtree adaptive method 
for simulating fluid flows with moving 
interfaces, J. Comp. Phys., vol. 194, pp. 35-56, 
2004. 
 
 [13] H. Samet. Applications of spatial data 
structures: computer graphics, image processing, 
and GIS.  Addison-Wesley, 1990.



CSME 2004 Forum 7 

          

          

        
Figure 7: Ellipse rotation.  The upper left plot illustrates the ellipse initially refined to level 7 (to 
accurately initialize the volume fractions); the upper right plot illustrates the actual initial refinement. 
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Figure 8:  An elongational velocity field.  The initial ellipse was stretched until t=560, and then the velocity 
field was reversed until t=1120. 
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Figure 9: A slotted disk rotated 360 degrees clockwise, then 360 degrees counter-clockwise.
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Figure 10:  Star stretching, at grid resolutions of 32*32, 64*64, 128*128, and on an adaptive grid. 
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