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ABSTRACT / crucible

Most previous modelling of the planar flow casting

process has specified a melt inflow rate into the gap be-

tween nozzle and wheel, rather than the actual bound-

ary condition which is an applied overpressure in- nozzle

side the crucible. The resulting simplification typi-

cally leads to predictions of the formation of steady  Puddle

so-called puddles, where experimental results clearly

point to a limited window of operability outside of

which a stable puddle will not form. In this paper, we

present details of a two-dimensional model of the flow,

heat transfer, and phase change of the planar flow cast-

ing process, with applied pressure as the inlet bound-

ary condition. The results of various simulations are

then presented, that demonstrate a limited range of

overpressures for a given wheel speed within which

a stable puddle can be formed. On the other hand, for

a given overpressure, simulations corresponding to a

very wide range of wheel speed all predict stable pud- Figure 1: Schematic of a melt spinner (not to scale).

dles. A reason for this may be that the high wheel

speed instability is a three-dimensional one, that acts

across the puddle and ribbon, and so cannot be préhe very thin gap between the underside of the nozzle

dicted by a two-dimensional model. and the top of the wheel. For some part of the operat-
ing space of the process (defined by three parameters:
the overpressurAp, the gap heighG, and the wheel

1 INTRODUCTION speedU), a so-calledpuddlg illustrated in Figure 2,

will stabilize between the nozzle and wheel, with the

inflow of melt balanced by the rate at which solidified

ribbon is removed from the bottom of the puddle.
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Planar flow casting, also referred toraslt spinningis

a rapid solidification process often utilized to produce
amorphous metallic ribbon or foil. Although widely
used to produce small quantities of material for re-In a review paper by Steen and Karcher [3], the au-
search purposes, the technique has seen little commethors present an operability window (reproduced in
cial application, for reasons related to the difficulty in Figure 3) as a function of two parameters driving the
scaling up the process, and in realizing stable operaprocess: the overpressure and the wheel inertia, each
tion. non-dimensionalized by the surface tension of the melt

The process is illustrated in Figure 1. A crucible con—that IS responsllble for containing the puddle within
the gap. In this paper, we present the results of a

tains molten material, and is positioned just above ; . .
) i S wo-dimensional model of the planar flow casting pro-
rotating chill wheel. Upon application of an overpres- .
cess, based on one developed previously [2], to ex-

sure inside the crucible, molten material is ejected into_ . ; . . : .
amine this operability window numerically. Various



slot breadth / nozzle value of a heat transfer coefficiemt(v) melt densityp,
B surface tensiomw, and thermal diffusivitya are char-
L ! acterized by constant values; dynamic viscositis
gap height (I: Bnez enwf‘[ss H  presumed to vary with temperature; and (vi) the pro-
| 0, cess occurs within a vacuum, so that shear stresses at
I the free surface are zero, and the only flow is within
the melt.

E—

wheel speed U
Equations governing flow and heat transfer from
Figure 2: Close-up of a melt spinning puddle. within the nozzle and gap are the equations of con-
servation of mass, momentum, and energy:
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whereu is velocity, p is pressure] is temperature,

T is the shear stress tensor, dag is the surface ten-

_ o _ sion force acting at the melt free surface, modelled as a
Figure 3: The operability window of Steen and poqy force according to the Continuum Surface Force
Karcher [3]. approach of Brackbill et al. [1]. Note that we make
no distinction between liquid and solid phases as the

_ i melt is assumed to solidify to an amorphous solid, and
improvements have been made to the previous model, rejeases no latent heat; thus, the flow equations are

but for the purposes of this paper, the significant dif-gq\ed throughout the melt/solid. The flow “sees” the
ference is the boundary condition at the inlet to thegyjjgiication via the temperature-dependent viscosity,

puddle. Rather than a specified inflow rate, which is,yhich increases by several orders of magnitude as the
the boundary condition also applied in most previousy,q|t cools.

modelling work, the results here are for a specified

overpressure. The difference is significant: simula-The equations are discretized according to typical fi-
tions for various specified inflow rates always yielded nite volume conventions on a rectilinear grid that en-
stable puddles [2]. On the other hand, as we will showcompasses the gap and 1 mm of the nozzle above
in this paper, stable puddles formed only for a limited the gap, and extends several millimetres both up and
range of overpressures for a given wheel speed; abov@ownstream of the exit of the nozzle, as illustrated in
and below the range, simulations would not Convergé:igure 4. \elocities are defined normal to cell faces;
to a steady solution, with fluid configurations nowherescalar quantities including pressure and temperature
near what one would expect for stable operation. are defined at cell centres.

The time discretization of equation 2 is via a two-
step projection method: an interim velocity is calcu-
lated from the convective, viscous, and surface tension
We present a brief overview of the model, similar to forces acting on the fluid during a timest&p. The
one developed previously and described in more detaitonvective and surface tension contributions are cal-
in[2]. culated explicity, while the viscous term is treated im-

Our model of the planar flow casting process is based !'Cmy' The interim ve.Ioc[t y1s the.n projected onto_ a
divergence-free velocity field, which leads to an im-

on the following assumptions: (i) a two-dimensional _ . - . . :
rt:JIlClt Poisson equation for pressure. Finally, equa-

planar configuration, as the ribbon width and the Wheetion 3 is solved explicitly at each timesten followin
diameter are much greater than the gap height; (ii) in- plicitly P 9

compressible, laminar, and Newtonian flow; (iii) the the pressure solve.

ribbon cools rapidly, so that solidification is to an The free surface is represented via a volume-of-fluid
amorphous (glassy) microstructure; (iv) the melt coolsapproach: a scalar functiohhas a value of 1 within
only to the wheel, and is characterized by a singlethe fluid, and otherwise 0, and satisfies the advection
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2 METHODOLOGY



specification of a contact angBeat every triple point,
as illustrated in Figure 2; these include the two points
on the underside of the nozzle, where the up and down-
stream menisci meet the nozzle, and the point at which
the upstream meniscus meets the wheel. The latter
a}salue matters little to the simulation, because at the
wheel inertial and viscous forces dominate. But on the
underside of the nozzle, the value will affect the posi-
tion of the meniscus.

Figure 4: A sample mesh, that extends across the g
and 1 mm into the nozzle.

equation:
of
5 t0-(uf)=0 4) 3 RESULTS

In discretized form, the value df corresponds to the We begin by presenting results of a simulation that
volume fraction of cells filled with fluid, and so varies leads to the formation of a steady puddle. The same
from zero to one, with the free surface located in cellssimulation was run on three different meshes and the
with 0 < f < 1. Equation 4 is discretized according results used to assess mesh-independence; the results
to the method of Youngs [4], by reconstructing the in- presented here correspond to a mesh size 0b22%
terface at each timestep in a piecewise-linear mannein the horizontal and vertical directions, respectively.
and then calculating flux volumes geometrically. The cells are uniformly distributed in the horizontal
Initially, the simulation begins with fluid only in the dlrgctlon; in the vertical dlrectlon,. the mesh is most

' refined at the bottom of the domain (at the wheel sur-

top row of cells in the domain. A no-slip condition is
imposed along the nozzle and wheel, with the wheelface)' and then gradually coarsens through the gap and

moving from left to right at the velocity. There is Into the nozzle.
no boundary condition at the upstream (left) side ofAll of the results in this paper are for material prop-
the gap, as we halt simulations when fluid reaches thigrties corresponding to molten Ng = 7870 kg/n¥,
boundary. The downstream (right) edge of the domaino = 1.7 N/m,a = 2.6 x 10~° m?/s, thermal conductiv-
is a simple outflow boundary, placed far enough down-ity k=90 W/mK (required to impose the heat transfer
stream that ribbon usually has cooled sufficiently to beboundary condition at the wheel surface), and the fol-
considered solid, and thus is moving at the wheel vedowing melt viscosity variation with temperature:
locity. 2180
—4
p=166x10 exp_l_ 5

whereT is specified in Kelvin.

Pa-s (5)

Pressure is set to zero in any cells with= 0, ie. in
the vacuum surrounding the melt. At the top of the
domain we prescribe an overpressigerather than a
specified inflow rate, as was done previously [2], andThe operating parameters for the first set of results are
couple that to a zero gradient condition on velocity the following: gap heighG = 0.375 mm, nozzle slot
normal to the inlet. Note that we are not modelling breadthB = 0.5 mm, wheel speeld = 26 m/s, the heat
the entire slot nozzle, which extends upward far moretransfer coefficient at the whebl= 1 x 106 W/m?K,

than 1 mm from the underside of the nozzle, but ratherand an overpressufgp = 10 kPa.

just the bottom part of it, and so presume that a fully

developed profile exists at that point. A contact angléd = 130° was specified along the in-

side and underside of the nozzle, which is different
At the beginning of a simulation, as fluid first begins than the 170 used previously [2]. We know from ex-

to enter the nozzle above the gap, it is the differencgeriment that the melt is very non-wetting, but won-
between the applied overpressure at the top of the dader whether the value may not be as high as we pre-
main and the zero pressure in the vacuum that drivesiously thought. A contact angle &= 90° was im-
flow; the velocity and volume fraction profiles are first posed along the wheel; we have no experimental basis
uniform across the nozzle, but these quickly change tdor choosing this value, but do know that it matters lit-
a rounded profile as the no-slip condition at the noz-tle to the results.

zle walls is |mp_osed._ BY the time the fluid has filled Figure 5 illustrates the formation of a steady puddle.
the nozzle and is beginning to enter the gap, the veloc:

. . X -7 T By 0.5 ms, the melt has filled most of the nozzle above
ity profile across the nozzle is nearly parabolic, with a ) .

. ) . the gap, and the profile at the front is rounded, reflect-

small linear pressure gradient to offset viscous shear. . ; " .

ing both the no-slip condition and the non-wetting con-

Finally, the surface tension calculation requires thetact angle applied at the nozzle walls. At 1 ms, the



puddle has already begun to take shape: a rounded -
upstream meniscus, and a downstream meniscus tha .
extends from the nozzle down to solid ribbon being
pulled from beneath the puddle. Another ms later,
the puddle has filled out: the upstream meniscus has '

moved upstream of the nozzle slot, while the down-
stream meniscus, although still pinned at the slot, has .
grown considerably longer. And as the last of the pro- A

files of Figure 5 illustrates, the puddle at 2 ms is very

near steady state, as the puddle at 10 ms looks very D
similar. -

The steady state position of the menisci in Figure

5: upstream of the nozzle slot and pinned at the a
downstream end, is similiar to results obtained previ- ’ )
ously [2] for specified melt inflow rates. Yet the down-

stream position is peculiar, as the little experimental
evidence that exists suggests that both menisci move -
away from the nozzle, up and downstream. That was - —C
the rationale for lowering the contact angle from 170

to 130, yet that change influences the position of the
upstream meniscus much more than the downstream
It isn’t clear at this point what would consistently lead (
to a downstream meniscus that is not pinned at the noz- '
zle slot.

Figure 5: Free surface contours leading to the develop-
Figures 6 and 7 illustrate the variation of pressure verment of a stable puddle at the reference overpressure
tically through the center of the nozzle and along theAp = 10 kPa.

base of the puddle, respectively, for the steady puddle

of Figure 5. Figure 6 illustrates the small pressure gra- 14r

dient required to drive fluid through the nozzle, and Eiob
then the very large jump in pressure that occurs in the ~ b
puddle, in reaction to the wheel pulling fluid from left > f
to right. Along the wheel, in the vicinity of the nozzle, 2080
one sees the same jump in pressure, with a maximum 2%°F
just to the right of the nozzle centerline. 52

c0.2F
Figures 8 and 9 present results for overpressures lower 8 05

and higher than the 10 kPa value that leads to a steady © Sressure [KPaj 8

puddle, and the results change dramatically from the

steady state. For too small an overpressiie,=5  Figure 6: Pressure vertically through the center of the
kPa, the fluid within the gap never settles down to any-nozzle, for the puddle illustrated in Figure 5.

thing that resembles a steady puddle. Off and on, fluid

does push upstream, and as evidenced by the profile

at 8 ms, at times there is much fluid downstream. In g e
the third of the contours, at 12 ms, one can see a large
chunk of fluid exiting the domain at the right. Suffice

to say that the entire simulation was characterized by
incomplete wetting on the underside of the nozzle, and
irregular upstream meniscus shapes. We ran the same
simulation on other meshes and obtained similar over-
all behaviour, although the specifics varied consider-
ably. We also ran the simulation presented in Figure 8
well past 10 ms, but the fluid configuration continued
to change abruptly at various times.
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Figure 7: Pressure along the bottom of the puddle, for
the puddle illustrated in Figure 5.



Thsufficient inflow and an Unstable process|
Simulation was stopped at 10ms
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~ Figure 10: Inflow rate as a function of time, for the
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Figure 8: Puddle contours at 4, 8, and 10 msNpr=
5 kPa.
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Figure 11: Ribbon thickness leaving the domain, as a
( , , 4 , , function of time, for the three different valuestp.

( bon thicknes# is plotted versus time, and again, the

’ ’ ‘ ) ‘ results forAp = 10 kPa are steady within a couple of
ms (note that at steady state, inflow rate and outflow
rateH «U are equal), at 15 kPa, the ribbon thickness
grows with time, and at 5 kPa, there is no evidence of
L : , ‘ ‘ . ‘ steady behaviour.

To conclude, the results of the effect of varying the
overpressure are in qualitative agreement with the op-
erability window of Figure 3, and are results that
were not obtained when specifying a fixed melt inflow
Attoo high a pressure (Figure 9), the result is smootherate [2].
than for too low a pressure, but the puddle fails to reackwe also ran a seri . . .
. . ies of simulations with an overpres-
steady state for a very different reason. In this case, agureAp - 10 kPa, varying the wheel speed about the
is also pictured in the cartoon at the right of the oper- '

- : . o reference value of 26 m/s, in order to investigate op-
ability window (Figure 3), the pressure is simply too o : . ) .
. ) erability behaviour along the vertical axis of Figure 3.
high, and so forces fluid all the way to the upstream

. nlike the results already shown, we saw no sign of
end of the nozzle. In our case, we defined the end o . . .
) . ; nstability, but rather obtained a steady state solution
the computational domain at that point, and stoppe

: . . r illustr in Figure 12. In thi h
the simulation when fluid reached the left edge. Also, 0 ‘?"?‘ChU’ as illustrated gure .t s case, the
osition of the upstream meniscus varies little over a
at 20 ms, note that waves have appeared on the dowrn-: i — .
) - wide range of wheel speeds; the significant differences
stream meniscus, that originate from the nozzle slot

: are in the shape of the puddle downstream of the noz-
and travel towards the right. The reason for the waves . ) . .
. . ) Zle. Note too that ribbon thickness increases dramati-
whether physical or numerical, is not known.

cally as the wheel speed decreases, and that in some
Figure 10 presents inflow rates versus time for thecases, the ribbons are very thick, and for these the
three simulations. Af\p = 10 kPa, the rate is steady outflow boundary may not be positioned far enough
within a couple of ms of the beginning of the process.downstream. Nevertheless, for each wheelspeed we
At 15 kPa, the inflow rate steadily increases with time,obtained steady results, and the reason is not clear.
as the upstream meniscus moves left. And at 5 kPa, in©ne possible explanation is that the instability at high
flow rate fluctuates dramatically, and never reaches anyheel speeds, illustrated in Figure 3 affects the depth
semblance of steady state. Figure 11 presents a similaf the puddle and ribbon, the dimension that we are not
picture, but from the outflow end of the domain. Rib- modelling with our two-dimensional approximation.

Figure 9: Puddle contours at 5, 10, and 20 ms Npr
=15 kPa.



Stretched vertically 4 times]

Figure 12: Steady puddle contours at five different
wheel speeds, fakp = 10 kPa.

4 CONCLUSIONS

Unlike the results of most previous models of the pla-
nar flow casting process, this paper presents results for
specified overpressure in the crucible. The change in
boundary condition leads to quite different behaviour
of the puddle formation process. In particular, the
model demonstrates unstable puddles both for over-
pressures that are too small and too large. On the other
hand, a series of simulations that examined the effect
of varying the wheel speed at a given overpressure all
led to stable puddles with no sign of instability, a re-
sult that may suggest that the instability at high wheel
speeds occurs across the depth of the puddle, and so
cannot be predicted with a two-dimensional code.
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