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Abstract
In simulating free-surface flows, the interface normal vectors and curvature are needed for modelling surface
tension effects. We present a new method for accurately calculating these quantities. In this method,
an entirely different approach is taken, compared to common methods where normals and curvature are
obtained from the Volume-of-Fluid (VOF) or Level Set (LS) functions. In this fixed-grid method, the
interface normals are advected along with the interface, although the methods of advecting normals and
the interface are independent. In this work, the interface is tracked using the VOF method. The advected
normals are used to reconstruct the interface at each timestep, and calculate the interface curvature at any
point. The mathematical formulation for the advection of normals is derived from the evolution equation of
the LS function, but the method is independent of the LS function. The implementation of the new method
is straightforward, and its accuracy is demonstrated via two test cases: translation and rotation of a circle.
The results show that this method is second-order accurate in calculating interface normals and curvature.
Furthermore, the performance of the method has been examined in a flow field which includes shear.
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Introduction
In simulating free-surface flows, accurate mod-

elling of surface tension effects is a challenging task.
Nonphysical velocities (spurious currents) are eas-
ily induced in the flow if the surface tension force
is not modelled properly. There are two sources of
error in modelling surface tension effects: (a) inter-
face curvature calculation and (b) the implementa-
tion method of the surface tension force. Recently,
Francois et al. [1] proposed a method for implement-
ing surface tension into a Volume-of-Fluid (VOF)
model which imposes an exact balance between the
surface tension and pressure forces. In this method,
no spurious currents are induced in the flow provided
that the interface curvature is exact.

This paper, then, focuses on the calculation of
accurate interface curvature and normals. There are
different methods for calculating interface curvature:
A common method is to calculate the first and sec-
ond derivatives of volume fractions (VOF function)
in the VOF method to obtain normals and curva-
ture. It is shown later in this paper that curvatures
calculated from the volume fractions are associated
with errors which grow linearly when increasing the
mesh resolution. Furthermore, the normals obtained
from the volume fractions are zero-order accurate in
space; i.e. they do not converge with mesh refine-
ment. An increasingly popular alternative is to cal-
culate normals and curvatures by taking the deriva-
tives of a Level Set (LS) function [2]. In general,
the LS function yields these quantities more accu-
rately than the VOF function. However, in order
to conserve mass (which is very important in mod-
elling multiphase flows) the LS function needs to be
reinitialized periodically during the interface evolu-
tion. Among different reinitialization methods, only
the coupled level set and VOF approach seems to
achieve mass conservation exactly. However, it is
demonstrated that curvatures calculated from the
LS function of a coupled LS and VOF model are
zero-order accurate in space.

Taking the derivatives of the VOF or LS func-
tion is an straightforward and easy approach for cal-
culating interface curvature. There are other meth-
ods for computing curvature which are more accu-
rate and sophisticated. The height-function method
[3], for example, yields converging, 2nd-order accu-
rate curvatures. In this method, a “height” function
is reconstructed directly from the volume fractions.
By taking the second derivative of the height func-
tion the interface curvature is obtained. Poo and
Ashgriz [4] utilized a second-order polynomial curve
fit to calculate the curvature of an interfacial cell
in two-dimensional space. In a method known as

PROST [5], the interface in each cell is fitted with
a paraboloid. The paraboloid with an optimal fit-
ting, which is found iteratively, generates almost the
same volume in a 3×3 stencil in 2D or 3×3×3 in 3D.
The curvature is then calculated from the quadratic
equation of the paraboloid.

Although these methods are able to yield curva-
ture with second-order accuracy, their implementa-
tion is not easy, and they become intricate in com-
plicated interface geometries such as liquid breakup.

This paper, then, introduces a new method for
accurately calculating interface curvature and nor-
mals. The structure of the paper is as follows. First,
we evaluate two current methods: taking derivatives
of the VOF and LS functions for calculating curva-
ture and normals. Then, the fundamentals and the
implementation of the new method are presented
and the method is compared with the above two
methods. Finally, through various test cases, the
accuracy and the performance of the new method is
demonstrated.

Existing numerical methods for calculating
interface unit normal vectors and curvature

In this section, we discuss and assess two meth-
ods which have been widely used for calculating in-
terface normals and curvature: using the volume
fractions in the VOF method, or employing the level
set function in the Coupled Level Set and VOF
(CLSVOF) method to calculate normals and cur-
vatures.

Volume-of-Fluid (VOF) method
In the VOF method, a scalar color function, f ,

defined as

f(~x) =
{

1, ~x ∈ liquid
0, ~x /∈ liquid (1)

is used to track the interface via the following ad-
vection equation

∂f

∂t
+ ~u · ∇f = 0 (2)

The interface unit normal vector is calculated by
taking the gradient of f ,

n̂ =
∇f

|∇f |
(3)

The curvature of interface is computed by

κ = −∇ · n̂ (4)

The VOF function is discontinuous by defini-
tion. The discretized form of the VOF function is
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Figure 1. (a) A typical liquid-gas interface, (b) the
VOF function for the liquid, and (c) the level set
function for the liquid.

the volume fraction of a numerical cell ij occupied
by the liquid, and is defined as

fij =
1

Ωij

∫
Ωij

fdΩ (5)

For a typical two-dimensional interface depicted
in Figure 1(a), the discretized VOF function, defined
at the center of each cell, is shown in Figure 1(b).
As can be seen, the volume fractions vary sharply
from zero to one across one cell. This discontinu-
ous behavior of f makes it difficult to find first and
second derivatives of f and thus, leads to inaccurate
interface normals and curvatures.

As a test problem, the normals and curvatures
of a 0.1m radius circle, centered at (0.5,0.5) in a
1×1m domain are calculated via equations (3) and
(4) using the VOF function. For any quantity q, the
l∞ and l1 errors are defined as follows:

l∞ = max
j
|(qcal. − qexact)j | (6)

l1 =
1
N

N∑
j=1

|(qcal. − qexact)j | (7)

The errors associated with unit normal vectors
at cell corners calculated by the VOF method are
presented in Table 1. The normals are zero-order ac-
curate in space, n̂cal. = n̂exact+O(∆x0), i.e. there is
a constant error associated with the normals, which
does not vanish as the mesh is refined.

R/∆x l∞ order l1 order
10 0.5429 0.0669

-0.18 -0.01
20 0.6162 0.0673

-0.07 0.04
40 0.6463 0.0656

-0.22 -0.02
80 0.7506 0.0666

Table 1. The errors associated with unit nor-
mal vectors at cell corners calculated by the VOF
method, for a 0.1m radius circle at different mesh
resolutions. The circle is centered at (0.5,0.5) in a
1×1m domain.

R/∆x l∞ order l1 order
10 30.8 4.4

-1.12 -0.54
20 66.8 6.4

-1.02 -0.84
40 135.4 11.4

-1.00 -0.93
80 270.7 21.8

Table 2. The errors associated with curvatures cal-
culated by the VOF method, for a 0.1m radius circle
at different mesh resolutions. The circle is centered
at (0.5,0.5) in a 1×1m domain.

The errors of the curvature values calculated by
the VOF method are presented in Table 2. It can be
seen that both l∞ and l1 grow linearly when increas-
ing the mesh resolution, κcal. = κexact + O(1/∆x).
This is a serious disadvantage of the VOF method.
Contrary to what one would hope, increasing the
mesh resolution deteriorates the accuracy of the cur-
vature values.

To rectify this problem the level set method,
which was believed to yield more accurate normals
and curvatures, was implemented. The fundamen-
tals and implementation of the level set method,



Figure 2. A representation of the level set function
φ for a typical domain Ω

along with its performance in calculating normals
and curvatures, will be presented next.

Coupled Level Set and VOF (CLSVOF) method
In the level set (LS) method [2, 6], the interface

is tracked by a LS function φ which for a domain
Ω (Figure 2) is defined as a signed distance to the
boundary ∂Ω

|φ(~x)| = min(|~x− ~xI |) for all ~xI ∈ ∂Ω (8)

implying that φ(~x) = 0 on the boundary where ~x ∈
∂Ω. Thus,

φ(~x) =

 < 0, ~x ∈ Ω
0, ~x ∈ ∂Ω
> 0, ~x /∈ Ω

(9)

For a typical two-dimensional interface depicted
in Figure 1(a), the discretized level set function φ,
which is defined at the center of each cell, is shown
in Figure 1(c).

The unit normal vector and curvature at any
point on the liquid interface are calculated from the
LS function by

n̂ =
∇φ

|∇φ|
(10)

and

κ = ∇ ·
(
∇φ

|∇φ|

)
(11)

Since the LS function φ is smooth and contin-
uous across the interface (see Figure 1(c)), spatial
derivatives can be easily discretized to calculate in-
terface curvature and normal vectors.

In the LS method, the motion of the interface is
defined by the following advection equation

∂φ

∂t
+ ~u · ∇φ = 0 (12)

There are a number of schemes for discretizing
equation (12). In this study, the spatial derivatives
in (12) were discretized using a second-order accu-
rate, essentially nonoscillatory (ENO) scheme. The

forward Euler scheme was used to discretize the tem-
poral derivative.

When φ is advected, the φ = 0 contour moves
at the correct velocity and properly represents the
interface; however, contours of φ 6= 0 do not nec-
essarily remain distance functions. This can result
in an irregular φ field and lead to violation of mass
conservation. To rectify this problem reinitialization
methods have been proposed, which adjust φ back
to a signed distance function without changing the
zero level set.

There are mathematical and geometrical ap-
proaches for reinitializing the LS function. The
mathematical approach reinitializes φ(~x) by solving
a partial differential equation to steady state. The
method is detailed in [7, 8] and is not presented here.
Although the mathematical approach improves con-
servation of mass considerably, it cannot achieve it
exactly.

In this study, a geometrical approach was im-
plemented for reinitializing the level set function. In
this method, the VOF function is advected along
with the LS function and is used to reinitialize the LS
function by the following procedure. Given the LS
and VOF functions, φn+1 and fn+1, the interface,
approximated as piecewise linear, is reconstructed
from fn+1 using the interface normal vectors cal-
culated from φn+1. The LS function is then reini-
tialized by calculating the distance between any cell
center (where the LS function is defined) and the in-
terface. This method is called “coupled level set and
volume-of-fluid”(CLSVOF) and it guarantees exact
mass conservation because it is based on the volume
fractions.

The reinitialization method used in this paper
is that of Son and Hur [9] and is not presented here.

The order of accuracy when reinitializing the LS
function and calculating unit normal vectors and
curvatures from the LS function

Similar to the evaluation of the VOF function
presented earlier, the test problem is a 0.1m radius
circle, centered at (0.5,0.5) in a 1×1m domain. The
errors associated with the reinitialized φ, and the
order of accuracy of the calculations are presented
in Table 3.

The errors associated with the unit normal vec-
tors and curvatures calculated from the LS function
via equations (10) and (11) are presented in Tables
4 and 5, respectively. As the results in Tables 3 to
5 show, the level set function and normal vectors
are second-order and first-order accurate in space,
respectively; but the curvature values are unfortu-
nately zero-order accurate, which means a constant



R/∆x l∞ order l1 order
10 1.83e-4 4.36e-5

1.97 2.20
20 4.68e-5 9.52e-6

1.83 2.11
40 1.32e-5 2.20e-6

2.04 1.90
80 3.22e-6 5.91e-7

Table 3. The errors associated with the reinitialized
level set function for a 0.1m radius circle, centered
at (0.5,0.5) in a 1×1m domain, at different mesh
resolutions.

R/∆x l∞ order l1 order
10 0.0186 0.00401

0.96 1.17
20 0.0096 0.00178

1.01 1.08
40 0.0047 0.00084

0.87 0.97
80 0.0026 0.00043

Table 4. The errors associated with the unit nor-
mal vectors at cell corners calculated by the level set
method, for a 0.1m radius circle at different mesh
resolutions. The circle is centered at (0.5,0.5) in a
1×1m domain.

error, ranging from 10 to 20%, is always associated
with the curvature values regardless of the mesh res-
olution.

The accuracy of the CLSVOF method used in
this research project is consistent [10] with the accu-
racy of the CLSVOF model developed by Sussman
and Puckett [11]. Although, using the LS function
significantly improves the accuracy of normal vectors
and curvature values compared to using the VOF
method, it does not provide converging curvature
values.

A new method for accurate calculation of inter-
face normals and curvature is presented next. In
this method, interface normals are advected along
with the interface. The interface curvature is then
calculated directly from the unit normals.

A new method for calculating interface nor-
mals and curvature: advecting the normals
Mathematical fundamentals

As reviewed earlier, the evolution of the level
set function is defined by the following advection
equation:

R/∆x l∞ order l1 order
10 1.88 0.460

0.01 0.29
20 1.87 0.375

-0.01 0.16
40 1.88 0.335

0.02 0.02
80 1.86 0.339

Table 5. The errors associated with the curvature
values calculated by the level set method, for a 0.1m
radius circle at different mesh resolutions. The circle
is centered at (0.5,0.5) in a 1×1m domain.

∂φ

∂t
+−→u · ∇φ = 0

The above equation can be written in the fol-
lowing form, too

∂φ

∂t
+ uiNi = 0 (13)

where

Ni =
∂φ

∂xi

and Ni denotes the component of the interface nor-
mal vector in the i-direction.

By taking the gradient of equation (13), we ob-
tain

∂

∂t
(

∂φ

∂xj
)êj +

∂

∂xj
(uiNi)êj = 0 (14)

which can be written as

∂

∂t
(Nj)êj +

∂

∂xj
(uiNi)êj = 0 (15)

In 2D cartesian coordinates, equation (15) re-
sults in the following equations:

∂Nx

∂t
+

∂

∂x
(uNx + vNy) = 0 (16)

and
∂Ny

∂t
+

∂

∂y
(uNx + vNy) = 0 (17)

Similar to the VOF and LS methods, the inter-
face curvature at any point is obtained from:

κ = ∇ · n̂

where n̂ is the unit normal vector calculated from
~N .

Now, consider the following lemma [12]:



Lemma 1 Let un = ~u · ∇φ be the normal velocity
of each level set, and set φ(~x, 0) to be the signed dis-
tance function. Then φ remains as a signed distance
function if and only if ∇un · ∇φ = 0

The condition ∇un · ∇φ = 0 can be also expressed
as:

∇(~u · ~N) · ~N = 0 (18)

where ~N = ∇φ.
Now, from the advection equation of ~N :

∂ ~N

∂t
+∇(~u · ~N) = 0 (19)

we can obtain:

∂ ~N

∂t
· ~N +∇(~u · ~N) · ~N = 0 (20)

or

1
2

∂

∂t
(| ~N |2) +∇(~u · ~N) · ~N = 0 (21)

So, if the condition in the above lemma is met
(equation (18) is satisfied), then we have:

∂

∂t
(| ~N |2) = 0 (22)

and since initially |∇φ| = | ~N | = 1, then ~N remains
a unit vector (this can be also deduced from the
above lemma directly). In other words, if we begin
with unit normal vector ~N and solve equation (19)
to advect ~N while satisfying equation (18), then ~N
remains a unit vector.

Equation (15) is solved to advect the interface
normal vector ~N . The corresponding numerical
methods are detailed next.

Numerical method for solving the equations of the
new method

Equation (15) represents an initial value prob-
lem. The initial value of ~N defined at each cell cor-
ner is specified easily from the initial geometry of an
interface.

The scheme which was used to discretize the
spatial derivative in equation (15) is a weighted es-
sentially non-oscillatory (WENO) scheme [6] that
guarantees third-order accuracy but is up to fifth-
order accurate in smooth regions of the flow. How-
ever, before taking the spatial derivatives, equation
(18) is satisfied.

The temporal derivative of equation (15) is dis-
cretized using the third-order, total variation dimin-
ishing (TVD) Runge-Kutta method [13].

Results of the new method
To compare the new method with the VOF and

level set methods, the same test problem (a 0.1m ra-
dius circle, centered at (0.5,0.5) in a 1×1m domain)
is considered again. ~N is exactly specified initially.
A 2nd-order accurate operator is used to calculate
curvatures from ~N . The errors associated with the
curvatures are presented in Table 6. As one would
expect, and unlike the VOF and LS methods, the
new method is able to calculate the interface curva-
ture by 2nd-order accuracy.

R/∆x l∞ order l1 order
10 0.0427 0.0196

2.08 2.03
20 0.0101 0.0048

2.07 2.00
40 0.0024 0.0012

2.00 2.00
80 0.0006 0.0003

Table 6. The errors associated with curvatures cal-
culated by the new method, for a 0.1m radius circle
at different mesh resolutions. The circle is centered
at (0.5,0.5) in a 1×1m domain.

Translation test
The next test problem is the translation of

a 0.15m radius circle centered initially at point
(0.25,0.5) in a 1×1m domain, where a constant ve-
locity field (1,0) m/s is specified. The circle is ad-
vected for 0.5m with CFL number of 0.125. At the
end of translation, the errors associated with curva-
tures and each component of ~N are studied at differ-
ent mesh resolutions. Tables 7(a) and (b) show the
errors in the x and y-components of ~N , respectively.
~N is second-order accurate. The errors associated
with the curvatures are presented in Table 7(c). The
curvature values are converging with almost second-
order accuracy.

Rotation test
In another test, a 0.15m radius circle is centered

at (0.8,0.5) in a 1×1m domain. An angular veloc-
ity ω = 1rad/s is specified about the center of the
domain. The circle is advected 2π radians at differ-
ent mesh resolutions, with a constant CFL = π/50.
Tables 8(a) and (b) show the errors associated with
Nx and Ny, respectively, at the end. The errors as-
sociated with the curvatures are presented in Table
8(c).



Nx

∆x l∞ order l1 order
1/32 4.34e-2 1.12e-2

1.75 1.72
1/64 1.29e-2 3.40e-3

1.68 1.50
1/128 4.02e-3 1.20e-3

(a)

Ny

∆x l∞ order l1 order
1/32 1.04e-1 1.83e-2

1.70 1.70
1/64 3.19e-2 5.6e-3

1.89 1.71
1/128 8.63e-3 1.71e-3

(b)

κ
∆x l∞ order l1 order
1/32 3.34 0.527

1.83 1.44
1/64 0.94 0.194

1.85 1.35
1/128 0.26 0.076

(c)

Table 7. The errors associated with (a) Nx (the
x-component of ~N), (b) Ny and (c) curvatures, for a
0.15m radius circle after being translated for 0.5m.
The circle is initially centered at (0.25,0.5) in a
1×1m domain and moves at 1m/s in the x-direction.
CFL = 0.125.

Vortex test
This section concludes with a problem that in-

cludes shear: the vortex test. In this problem, the
following velocity field is specified in a 1×1m do-
main:

u = sin2(πx) sin(2πy) (23)

v = − sin2(πy) sin(2πx) (24)

A circle of 0.15m radius is initially placed at
(0.5,0.75); see Figure 3. The circle is advected for
1 second and then the sign of the velocity field is
reversed and the circle is advected for another 1 sec-
ond. Ideally, at the end, we would obtain the ini-
tial configuration, i.e. the circle. The test was per-
formed at two mesh resolutions: 15 cells per radius

Nx

∆x l∞ order l1 order
1/32 8.62e-2 2.30e-2

2.83 2.84
1/64 1.21e-2 3.21e-3

1.96 2.27
1/128 3.11e-3 6.66e-4

(a)

Ny

∆x l∞ order l1 order
1/32 6.62e-2 2.07e-2

2.63 2.79
1/64 1.07e-2 2.98e-3

2.38 2.56
1/128 2.05e-3 5.06e-4

(b)

κ
∆x l∞ order l1 order
1/32 1.867 0.408

2.86 2.53
1/64 0.256 0.071

0.85 1.24
1/128 0.142 0.030

(c)

Table 8. The errors associated with (a) Nx, (b) Ny

and (c) curvatures, for a 0.15m radius circle after
being rotated for 2π radians. The circle is initially
centered at (0.8,0.5) in a 1×1m domain and rotates
at ω = 1rad/s around the centre of the domain. CFL
= π/50.

(cpr) and 30 cpr, with CFL = 0.1. The results are
presented in Figure 3. At 15 cpr, since the circle is
sheared until very thin, the tail region is not well re-
solved. As the interfaces on the two sides come very
close to each other, the normal vectors in that region
vary sharply across one cell. When the sheared cir-
cle moves backward, the tail (with poorly resolved
normals) expands. The inaccurate information in
this region then leads to the deformed circle at the
end. When the resolution is increased to 30 cpr, the
recovery of the circle is improved significantly. This
implies that for satisfactory performance the new
method needs a minimum resolution in areas where
the normals vary sharply.



Summary

It has been shown that the accuracy of the cur-
vature values calculated from the Volume-of-Fluid
function deteriorates with mesh refinement. As well,
there is a constant error associated with the curva-
tures calculated from the level set function, which
does not vanish by decreasing the mesh size. A new
method for calculating the interface curvature and
normal vectors is proposed in which the interface
normal vectors are advected along with the interface.
The method is easy to implement, and is second-
order accurate in calculating interface normals and
curvature.
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Figure 3. Numerical results of the vortex test for (a) 15cpr resolution and, (b) 30cpr; CFL = 0.1.


