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An implicit implementation of surface tension in finite volume models for
two-phase flows
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Abstract
We present an implicit implementation of surface tension in finite volume models for two-phase flows. Using
the implicit model, the surface tension time step restriction, which is often the strictest one, can be exceeded
without destabilizing the solution. The surface tension force in the implicit model consists of an explicit part,
which is the regular continuum surface force (CSF), and an implicit part which represents the diffusion of
velocities induced by surface tension on an interface between two fluids. The surface tension force is applied
on velocity field by solving a system of equations iteratively. Since the equations are solved only near an
interface, the computational time spent on the iterative procedure is insignificant.
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Introduction

The continuum surface force (CSF) model [1],
developed a decade ago, has been widely used for im-
plementing surface tension forces in interfacial flow
models. The CSF model is explicit, and thus for nu-
merical stability, the timestep size ∆t must satisfy
the following condition:

∆t ≤ ∆tST =

√
ρ(∆x)3

2πσ
(1)

where ρ is the average density of two phases, σ is the
surface tension, and ∆x is the mesh size. This condi-
tion imposes a stringent constraint on ∆t, especially
if surface tension is a dominant force.

If the viscous effects are also modelled by an
explicit approach, then ∆t must also satisfy the fol-
lowing condition:

∆t ≤ ∆tvis. =
ρ(∆x)2

2µ
(2)

where µ is fluid viscosity.
In addition to the above restrictions, ∆t must

satisfy the Courant-Friedrichs-Lewy (CFL) condi-
tion which results from using an explicit time-
marching scheme for discretizing the convective
term:

∆tCFL ≤ ∆x

u
(3)

where u represents velocity.
To compare these timestep restrictions, consider

a 100 micron water droplet moving at 1 m/s, dis-
cretized by 20 cells per radius (∆x = 2.5× 10−6 m).
The timestep restrictions are

∆t ≤ ∆tST = 2.5× 10−7 s
∆t ≤ ∆tvis. = 8× 10−6 s
∆t ≤ ∆tCFL = 2.5× 10−6 s

As we see, the timestep restriction due to surface
tension is an order of magnitude smaller than the
others. If this restriction is removed, or at least mit-
igated, then time-marching can be done at larger
timesteps, and hence simulation run times can be
reduced significantly. In the above example, by re-
moving the surface tension timestep restriction, one
could run simulations 10 times faster.

Hysing [2] presented an implicit approach to the
CSF model in a finite-element context, in which
∆tST is exceeded by at least a factor of 10. In
this paper, we present an implementation of Hys-
ing’s model for a finite-volume method. We do
this in the context of a volume-of-fluid (VOF)-based
model; however, the implementation presented here
could also be extended to models which employ other
interface tracking techniques, such as the level set
method.

Mathematical fundamentals
Consider a two-phase flow where fluids are im-

miscible and both incompressible. The governing
equations are conservation of mass and momentum:

∇ · ~U = 0 (4)

∂
(
ρ~U
)

∂t
+ ∇ ·

(
ρ~U ~U

)
= −∇P +

∇ ·
(
µ
(
∇~U +∇T ~U

))
+ ~FST + ~FB

(5)

where ~U is the velocity, P the pressure, ~FST the
surface tension force, and ~FB any body forces, such
as gravity.

Using a first-order scheme to discretize the tem-
poral derivative in Eq. (5), and employing a two-step
projection method, we solve Eq. (5) by splitting it
into predictor and corrector steps:

ρn+1~U∗ − ρn ~Un

∆t
=

−∇ ·
(
ρ~U ~U

)n

+∇ ·
(
µ
(
∇~U +∇T ~U

))n

+

~Fn
B + ~Fn+1

ST (6)

ρn+1~Un+1 − ρn+1~U∗

∆t
= −∇pn+1 (7)

where superscripts n and n + 1 denote the current
and next time levels, and ∗ represents an interim
level.

In the CSF formulation [1],

~FST = σκn̂δΓ (8)

where κ is interface curvature, n̂ a unit normal vector
to the interface, and δΓ the Dirac delta function.

Following [2], an identity mapping, denoted by
idΓ is defined on an interface Γ as

idΓ = ~x|Γ = ~xδΓ

where ~x denotes the position vector. From differen-
tial geometry, we can show

∆idΓ = κn̂ (9)

where ∆ is the tangential (or surface) Laplacian op-
erator also known as the Laplace-Beltrami operator
(see Appendix). Thus, ~FST becomes

~FST = σ (∆idΓ) δΓ (10)



and the surface tension term in Eq. (5) can be writ-
ten as

~Fn+1
ST = σ

(
∆idn+1

Γ

)
δΓ (11)

where idn+1
Γ denotes the interface location at time

n + 1.
Following [2, 3], we use a backward Euler scheme

to approximate idn+1
Γ as

idn+1
Γ = idn

Γ + ∆t~Un+1 (12)

which is analogous to

~x|n+1
Γ = ~x|nΓ + ∆t~Un+1 (13)

We also consider the following approximation where
the Crank-Nicolson scheme is used

idn+1
Γ = idn

Γ +
∆t

2
(
~Un + ~Un+1

)
(14)

Substituting Eqs. (12) and (14) into Eq. (11) and
rearranging, we obtain

~Fn+1
ST = σ(κn̂)nδΓ + σ∆t(∆~Un+1)δΓ (15)

and

~Fn+1
ST = σ(κn̂)nδΓ +

σ∆t

2
(
∆~Un + ∆~Un+1

)
δΓ (16)

The term σ(κn̂)nδΓ in Eqs. (15) and (16) is the regu-
lar CSF force (see Eq. (8)), and the additional term
(see Appendix for ∆~U) represents diffusion of veloci-
ties induced by surface tension force on an interface.
Note that as ∆t tends to zero, the diffusive term
vanishes, implying that as ∆t decreases, the implicit
implementation asymptotes to the familiar explicit
implementation of the CSF model.

We use both forms of ~Fn+1
ST , presented in Eqs.

(15) and (16), in Eq. (6) and study the results.
Rewriting Eq. (6) as

ρn+1~U∗ = ρ̃~U + ∆t ~Fn+1
ST (17)

where

ρ̃~U = ρn ~Un +∆t
[
−∇ ·

(
ρ~U ~U

)n

+

∇ ·
(
µ
(
∇~U +∇T ~U

))n

+ ~Fn
B

]
(18)

we first use the expression given in Eq. (15) for ~Fn+1
ST

and substitute it into Eq. (17):

ρn+1~U∗ = ρ̃~U+σ∆t(κn̂)nδΓ+σ(∆t)2(∆~U∗)δΓ (19)

In two-dimensional (2D) Cartesian coordinates,
where we define ~U = (u, v) and n̂ = (n1, n2), and

using Eq. (A-12) for ∆~U∗, we obtain the follow-
ing equation for applying surface tension on the u-
component of velocity:

ρn+1u∗ = ρ̃u + σ∆t(κn1)nδΓ +

σ(∆t)2
[
n2

2u
∗
xx + n2

1u
∗
yy − 2n1n2u

∗
xy −

(n1u
∗
x + n2u

∗
y)
(
n2

2n1x + n2
1n2y −

n1n2(n1y + n2x)
)]

δΓ (20)

where the subscripts x and y denote derivatives
with respect to x and y, respectively, and ρ̃u is
the x-component of Eq. (18). Similarly, for the v-
component of ~U , we have

ρn+1v∗ = ρ̃v + σ∆t(κn2)nδΓ +

σ(∆t)2
[
n2

2v
∗
xx + n2

1v
∗
yy − 2n1n2v

∗
xy −

(n1v
∗
x + n2v

∗
y)
(
n2

2n1x + n2
1n2y −

n1n2(n1y + n2x)
)]

δΓ (21)

To apply surface tension on the velocity field, these
equations are solved for u∗ and v∗ at each timestep
by solving systems of algebraic equations.

Substituting Eq. (16) into Eq. (17) then yields

ρn+1~U∗ = ρ̃~U + σ∆t(κn̂)nδΓ +
σ(∆t)2

2
(∆~Un + ∆~U∗)δΓ (22)

which can also be written in terms of u and v, similar
to Eqs. (20) and (21).

Numerical methodology
Using a two-step projection method, Eqs. (4)

and (5) are solved in 2D Cartesian coordinates. In
the predictor step (Eq. (6)), an interim velocity ~U∗ is
calculated by considering convective, viscous terms,
surface tension and body forces. Then, in the cor-
rector step (Eq. (7)), Eq. (4) at time level n + 1 is
employed to yield an implicit equation for pressure:

1
∆t

(
−∇ · ~U∗

)
= −∇ · ∇pn+1 (23)

A solution for pressure is obtained at each timestep
from Eq. (23), and finally the new velocity field ~Un+1

is evaluated via Eq. (7).
A collocated arrangement of variables is used

here, where pressure and velocities are defined at
cell-centers. By incorporating a consistent mass and
momentum advection scheme [4], the flow model can
simulate high density ratio flows. In addition to the
implicit implementation of surface tension, i.e. the
formulations presented in Eqs. (15) and (16), we also



consider the standard CSF [1] and the consistent
CSF [5] models for comparison.

We use the “coupled level set and volume-of-
fluid” (CLSVOF) method of Son and Hur [6] for this
study. In this method, the interface is represented
by a smooth level set (LS) function [7, 8] denoted by
φ. For a domain Ω, φ is defined as a signed distance
function to the boundary (interface) ∂Ω

|φ(~x)| = min(|~x− ~xI |) for all ~xI ∈ ∂Ω (24)

implying that φ(~x) = 0 on ∂Ω. Choosing φ to be
positive inside Ω, we then have

φ(~x) =

> 0, ~x ∈ Ω
0, ~x ∈ ∂Ω
< 0, ~x /∈ Ω

(25)

The unit normal vector and curvature at any point
on the interface are calculated from φ by

n̂ =
∇φ

|∇φ|
(26)

and

κ = −∇ ·
(
∇φ

|∇φ|

)
(27)

The motion of the interface is defined by the
following advection equation

∂φ

∂t
+ ~U · ∇φ = 0 (28)

When φ is advected, the φ = 0 contour moves at the
correct velocity and properly represents the inter-
face; however, contours of φ 6= 0 do not necessarily
remain distance functions. This can result in an ir-
regular φ field that in turn leads to problems with
mass conservation. To rectify this problem reinitial-
ization methods have been developed, which adjust
φ back to a signed distance function without chang-
ing the φ = 0 contour.

In the CLSVOF method, to reinitialize φ, the
LS function is coupled with the VOF function. The
VOF function, a scalar color function denoted by f ,
is defined as

f(~x) =
{

1, ~x ∈ fluid1
0, ~x ∈ fluid2 (29)

to represent fluid 1 in a two-phase system. The VOF
function is advected by

∂f

∂t
+ ~U · ∇f = 0 (30)

After advecting φ and f from time n to n + 1, the
interface, approximated as piecewise linear, is then

reconstructed from fn+1 using the interface normal
vectors calculated from φn+1. φ is then reinitialized
by calculating the distance between any cell center
(where φ is defined) and the VOF interface.

The CLSVOF method achieves exact mass con-
servation if it is based on an exactly-conservative
VOF approach. Here, the VOF function is ad-
vected by the method of Youngs [9], which is vol-
ume conserving. For the level set function φ, the
spatial derivatives in Eq. (28) were discretized us-
ing a second-order accurate, essentially nonoscilla-
tory (ENO) scheme and the forward Euler scheme
was used to discretize the temporal derivative.

Results
Static drop in the absence of gravity

Consider a drop of fluid 1 with a radius of 0.25
centered at (0.5,0.5) in a 1×1 domain filled with fluid
2, in the absence of gravity. ρ1 = ρ2 = 1000, µ1 =
µ2 = 5 × 10−2, σ = 0.1. ∆x = ∆y = 1/128. Ac-
cording to the surface tension and viscous timestep
restrictions (Eqs. (1) and (2)), ∆t ≤ ∆tST = 0.03
and ∆t ≤ ∆tvis. = 0.61.

To model the flow, we first used the standard
and consistent CSF models [1, 5] and ran the simu-
lation to t = 90 with ∆t = 0.015. Table 1 shows the
maximum and average magnitudes of dimensionless
spurious currents ~Uµ/σ at t = 90, as well as the
pressure jumps. ∆Ptotal denotes the difference be-
tween average pressures in the r ≤ R and r > R
regions, ∆Ppartial represents the difference between
average pressures in the r ≤ R/2 and r > 3R/2
regions (to avoid the transition region around the
interface), and ∆Pmax is the difference between the
maximum and minimum pressures in the domain.
∆Pexact = 0.4. Note that the consistent CSF model
yields smaller spurious currents. Also, the pressure
jumps predicted by the standard and consistent CSF
models are the same except for ∆Pmax.

Note that when explicit surface tensions models
are used it is possible to use timesteps up to 2∆tST

and still obtain stable solutions in some cases. In
fact, the way the surface tension timestep constraint
was devised [1] allows for this. We successfully ran
the above test with ∆t = 2∆tST using the consis-
tent CSF model. However, when ∆t > 2∆tST , the
explicit surface tension models failed, as expected.
For example, when the standard or consistent CSF
models were used with ∆t = 6∆tST , the solution
became unstable after only eight or four timesteps,
respectively. In this case, velocities induced by sur-
face tension violated the CFL condition.

Next, we ran the same simulation but with the
implicit implementation of surface tension (Eqs. (15)



and (16)). This time we used a range of timesteps:
∆t = 0.015, 0.03, 0.06, 0.12, and 0.18, and ex-
ceeded ∆tST . The solution was stable even when
∆t = 0.18 = 6∆tST . The maximum and aver-
age magnitudes of dimensionless spurious currents
at t = 90 are presented in Table 2 for both formula-
tions.

Comparing the results at ∆t = 0.015 with the
ones from the explicit models, it can be seen that the
consistent CSF model produces the smallest spuri-
ous currents, and that the magnitude of maximum
spurious currents generated by the implicit models
are smaller than those of the standard CSF model.
However, the implicit models yield average spuri-
ous currents that are greater than those of the stan-
dard CSF model. This can be explained by consid-
ering Figure 1, which shows the spurious currents
induced in the flow at t = 90, using different surface
tension models. When the standard CSF model is
used, the spurious currents, shown in Figure 1(c),
are very large on the interface but quite small off
the interface, making the average magnitude of cur-
rents small. When implicit models are used (Figures
1(a) and (b)), the currents are not as large as in the
standard CSF result, but they are stronger far from
the interface. Thus, the average magnitude of the
spurious currents is larger when the implicit model
is used. Figure 1(d) shows the consistent CSF model
results magnified six times; as can be seen, spurious
currents are larger on the interface and inside the
drop, than outside.

As well, we notice that when the implicit models
are used the pressure jumps decrease as ∆t increases.
This is less severe when the Crank-Nicolson scheme
is used. We found that the reason lies in the left-
hand side of Eq. (23), i.e. the source term of the
pressure equation. As ∆t increases, ~U and effectively
∇· ~U increase quite linearly for ∆t ≤ 2∆tST = 0.06.
However, as we saw in Table (2), when ∆t > 0.06,
~U starts to asymptote, and hence the source term of
the pressure equation becomes smaller, which causes
the loss in pressure jump.

Note that at the same timestep, run times are
very close among the implicit and explicit surface
tension models. For example, when ∆t = 0.015, run
times of the standard CSF, consistent CSF, and im-
plicit models (both formulations) are 175, 170, and
177 minutes, respectively, suggesting that the time
spent on the iterative solution of Eq. (19) or (22)
is insignificant. This is because these equations are
solved only in cells near an interface, where surface
tension effects are present.

Buoyancy-driven flow
Consider a bubble of fluid 1 in a 1× 2 container

filled with fluid 2. The radius of the bubble is 0.1,
and it is positioned at (0.5,0.5). ρ1 = 500, ρ2 =
1000, µ1 = µ2 = 10−2, σ = 0.1, g = −9.81 × 10−3,
and ∆x = ∆y = 1/128. The surface tension and
viscous timestep restrictions are ∆t ≤ ∆tST = 0.024
and ∆t ≤ ∆tvis. = 1.53.

We simulated the rise of the bubble due to buoy-
ancy effects by using the implicit surface tension
models, as well as the standard and consistent CSF
models. Figure 2 illustrates bubble shapes at t = 0,
18, and 36 when ∆t = 0.006 and 0.012, and Fig-
ure 3 displays results from the implicit methods at
∆t = 0.12 = 5∆tST .

At ∆t = 0.006, the results of the implicit mod-
els and the standard CSF are quite similar. This
is expected because at small timesteps, the diffusive
terms in Eqs. (15) and (16) approach zero; hence the
implicit models are almost identical to the standard
CSF. Note that when consistent CSF is used, the
interface shape at t = 36 is different than the one
predicted by the other models. This is probably due
to the consistent treatment of surface tension and
pressure, which yields a more accurate representa-
tion of surface tension forces.

With ∆t = 0.012, results of the implicit models
are almost identical but they differ in terms of in-
terface shape from that of the explicit models. Note
that interface shapes predicted by explicit models
are different, too, probably due to the same reason
discussed above. The height of bubble, however, is
almost the same for all models.

Finally, when ∆t = 0.12, at which the ex-
plicit models are unstable, the implicit models yield
slightly different interface shapes. Note that at
∆t = 0.12, the magnitudes of the diffusive terms in
Eqs. (15) and (16) are significant and also different,
which result in different surface tension forces and
interface shapes. Furthermore, at this timestep, the
height of the bubble is calculated to be slightly lower
than that obtained at smaller timesteps. The dif-
ferences between drop shapes and heights predicted
by the implicit and explicit surface tension models,
which become more obvious when the timestep is
large, may be related to the loss in pressure jump in
the static drop presented earlier. This issue needs
to be further investigated and rectified.

Summary
The surface tension timestep restriction which

is imposed by the explicit standard and consistent
CSF models [1, 5] is stringent, especially when sur-
face tension is a dominant force. Hysing [2] has



presented an implicit surface tension method in a
finite-element context, where the timestep restric-
tion is mitigated significantly. Here, we presented a
method for implementing Hysing’s model in inter-
facial flow models which are based on finite-volume
method. The solution of velocity induced by surface
tension involves an iterative procedure on cells near
an interface; hence the computational time spent on
the iterative procedure is insignificant. It was shown
that the surface tension timestep restriction can be
exceeded by at least a factor of 5 using implicit mod-
els, without destabilizing the numerical solutions.

Appendix
Tangential gradient

The tangential gradient of a scalar function f is
defined as

∇f = ∇f − (n̂ · ∇f) n̂ (A-1)

where ∇ denotes the regular gradient, and n̂ is the
unit normal vector of the surface on which the tan-
gential gradient is calculated. The tangential gra-
dient is then the directional derivative of f in the
direction tangent to a surface.

In two-dimensional (2D) Cartesian coordinates,
where f = f(x, y) and n̂ = n1î + n2ĵ, the tangential
gradient is

∇f = (fxî+ fy ĵ)− (n1fx +n2fy)(n1î+n2ĵ) (A-2)

or

∇f =
(
fx − n1(n1fx + n2fy)

)
î +(

fy − n2(n1fx + n2fy)
)
ĵ (A-3)

where subscripts x and y denote differentiation with
respect to x and y, respectively.

Tangential Laplacian
The tangential Laplacian or Laplace-Beltrami

operator of f is defined as

∆f = ∇ · ∇f
= ∇ · ∇f − (n̂ · ∇)(∇f) · n̂ (A-4)

In 2D, the first term in Eq. (A-4) is

∇ · ∇f = ∇ ·

((
fx − n1(n1fx + n2fy︸ ︷︷ ︸

=A

)
)
î+

(
fy − n2(n1fx + n2fy)

)
ĵ

)
= fxx − n1xA− n1Ax+

fyy − n2yA− n2Ay

(A-5)

In the second term of Eq. (A-4)

(n̂ · ∇)(∇f) = n1
∂
∂x (fx − n1A)̂i+

n2
∂
∂y (fx − n1A)̂i+

n1
∂
∂x (fy − n2A)ĵ+

n2
∂
∂y (fy − n2A)ĵ

=
(
n1fxx − n1(n1xA + n1Ax)+

n2fxy − n2(n1yA + n1Ay)
)
î

+(
n1fxy − n1(n2xA + n2Ax)+

n2fyy − n2(n2yA + n2Ay)
)
ĵ

(A-6)
and so,

(n̂ · ∇)(∇f) · n̂ = n2
1fxx − n2

1(n1xA + n1Ax)+
n1n2fxy − n1n2(n1yA + n1Ay)+
n1n2fxy − n1n2(n2xA + n2Ax)+
n2

2fyy − n2
2(n2yA + n2Ay)

(A-7)
Combining, Eqs. (A-5) and (A-7):

∆f = fxx(1− n2
1) + fyy(1− n2

2)− 2n1n2fxy−
n1xA(1− n2

1)− n1Ax(1− n2
1 − n2

2)−
n2yA(1− n2

2)− n2Ay(1− n2
1 − n2

2)+
n1n2A(n2x + n1y)

(A-8)
or

∆f = n2
2fxx + n2

1fyy − 2n1n2fxy − (n1fx+
n2fy)

(
n2

1n2y + n2
2n1x − n1n2(n2x + n1y)

)
(A-9)

Tangential gradient and tangential Laplacian of a
vector

Consider a vector quantity ~U in 2D where

~U = uî + vĵ (A-10)

On a surface with unit normal vector n̂ = n1î+n2ĵ,
the tangential gradient and tangential Laplacian of
~U are

∇~U =
[
ux uy

vx vy

]
−[

n1(n1ux + n2uy) n2(n1ux + n2uy)
n1(n1vx + n2vy) n2(n1vx + n2vy)

]
(A-11)



and

∆~U =


n2

2uxx + n2
1uyy − 2n1n2uxy − (n1ux+

n2uy)
(
n2

2n1x + n2
1n2y − n1n2(n1y + n2x)

)
n2

2vxx + n2
1vyy − 2n1n2vxy − (n1vx+

n2vy)
(
n2

2n1x + n2
1n2y − n1n2(n1y + n2x)

)


(A-12)
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Table 1. The maximum and average magnitudes of dimensionless spurious currents and pressure jumps at
t = 90, for a static drop with a radius of 0.25 centered at (0.5,0.5) in a 1×1 domain, using the standard
CSF [1] and consistent CSF [5] models. ∆x = ∆y = 1/128, ρ1 = ρ2 = 103, µ1 = µ2 = 5 × 10−2, σ = 0.1,
∆t = 0.015, ∆Pexact = 0.4.

|~Uµ/σ|max |~Uµ/σ|ave. ∆Ppartial ∆Ptotal ∆Pmax

Standard CSF 1.43× 10−3 2.1× 10−5 0.4008 0.3964 0.5677
Consistent CSF 9.8× 10−5 4.0× 10−6 0.4008 0.3964 0.4088

Table 2. The maximum and average magnitude of dimensionless spurious currents and pressure jumps at
t = 90, in a static drop with a radius of 0.25 centered at (0.5,0.5) in a 1×1 domain. Results are of the
implicit surface tension model, using (a) the backward Euler scheme (Eq. (15)) and (b) the Crank-Nicolson
scheme (Eq. (16)), at different timesteps. ∆x = ∆y = 1/128, ρ1 = ρ2 = 103, µ1 = µ2 = 5× 10−2, σ = 0.1,
∆tST = 0.03, ∆Pexact = 0.4.

(a)
∆t |~Uµ/σ|max |~Uµ/σ|ave. ∆Ppartial ∆Ptotal ∆Pmax

0.015 5.30× 10−4 7.35× 10−5 0.4248 0.4178 0.5505
0.03 1.26× 10−3 1.91× 10−4 0.3798 0.3767 0.4608
0.06 2.35× 10−3 3.83× 10−4 0.3661 0.3613 0.4263
0.12 3.29× 10−3 5.55× 10−4 0.3616 0.3538 0.4397
0.18 3.73× 10−3 6.40× 10−4 0.3183 0.3091 0.3994

(b)
∆t |~Uµ/σ|max |~Uµ/σ|ave. ∆Ppartial ∆Ptotal ∆Pmax

0.015 4.59× 10−4 6.15× 10−5 0.4072 0.4020 0.5218
0.03 1.11× 10−3 1.64× 10−4 0.3847 0.3806 0.4702
0.06 2.10× 10−3 3.38× 10−4 0.3848 0.3789 0.4451
0.12 3.04× 10−3 5.10× 10−5 0.3660 0.3584 0.4387
0.18 3.44× 10−3 5.85× 10−4 0.3428 0.3346 0.4182



Figure 1. The spurious currents at t = 90 in a static drop with a radius of 0.25 centered at (0.5,0.5) in a
1×1 domain. Results are of the implicit surface tension model, using (a) the backward Euler scheme and
(b) the Crank-Nicolson scheme. Explicit results are of (c) the standard CSF model and (d) the consistent
CSF model (velocities magnified six times). ∆x = ∆y = 1/128, ρ1 = ρ2 = 103, µ1 = µ2 = 5× 10−2, σ = 0.1,
∆t = 0.015



Figure 2. Interface shape as a bubble (fluid 1) rises in fluid 2 due to buoyancy forces. The implicit
surface tension model is combined with (a) the backward Euler scheme and (b) the Crank-Nicolson scheme.
Explicit results are of (c) the standard CSF model and (d) the consistent CSF model. ρ1 = 500, ρ2 = 1000,
µ1 = µ2 = 10−2, σ = 0.1, g = −9.81× 10−3, ∆x = ∆y = 1/128, ∆tST = 0.024.



Figure 3. Interface shape as a bubble (fluid 1) rises in fluid 2 due to buoyancy forces. The implicit
surface tension model is combined with (a) the backward Euler scheme and (b) the Crank-Nicolson scheme.
∆t = 0.12, ρ1 = 500, ρ2 = 1000, µ1 = µ2 = 10−2, σ = 0.1, g = −9.81 × 10−3, ∆x = ∆y = 1/128,
∆tST = 0.024.


