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Abstract 

Shape oscillation and the translational motion of a single incompressible air bubble under forced vibration in a water 
container were studied. A 3D level set based flow solver was employed to solve the governing equations for the 
bubble motion and capture the interface between two fluids. Bubble shapes are characterized by decomposing it to 
Legendre harmonics. The bubble response is categorized as small amplitude regular oscillations, large amplitude 
chaotic oscillations, and chaotic oscillations resulting in bubble piercing. In the latter category, a liquid jet forms that 
penetrates into the bubble core, resulting in a pierced and toroidal shaped bubble. 

I. INTRODUCTION 

Thermal management and life support systems in 
microgravity may require phase separation and 
degasification of fluid mixtures. The separation of a 
dispersed gas phase within a liquid is a challenging 
task in the absence of the gravitational field. 
Vibration of a liquid container with dispersed bubbles 
induces an external acceleration which can be used to 
move the bubbles within the liquid [1, 2]. Depending 
on the level of the induced acceleration, the bubble 
dynamics will vary from a linear and regular 
response, to nonlinear and chaotic causing the bubble 
to breakup.  

Forced vibration induces an oscillatory acceleration 
of the gas bubbles, which results in an oscillatory 
buoyancy force acting on the bubbles. Such a force 
causes a bubble to undergo an oscillatory 
translational motion. In addition, due to a non-
uniform pressure distribution, the bubble goes 
through shape deformation. The pressure variation 
due to the vibration has a linear profile at any instant 
in time and as a result, the bubble experiences an 
oscillatory pressure variation. The translational 
motion and shape deformation of the bubble are 

coupled as the two motions affect the velocity field 
and pressure distribution. In the context of 
acoustically forced vibration of a spherical bubble, it 
has been shown that the coupling between the volume 
oscillations and the translational motion can result in 
a chaotic bubble behavior provided that the amplitude 
of the oscillation is large enough [3, 4]. 

The applied frequency in this work is an order of 
magnitude smaller than the acoustic resonance 
frequency (also called the Minnaert frequency). The 
Minnaert frequency is about 1.6 kHz for the 4 mm 
diameter air bubble in water that we consider, yet the 
applied forcing frequency does not exceed 200 Hz. 
Also, the order of magnitude of the induced velocities 
is smaller than the speed of sound and so an adiabatic 
condition will be assumed. As a result, the bubble is 
assumed to be incompressible and only shape 
oscillations of the bubble are considered; both regular 
and chaotic shape oscillations and translational 
motion are studied. 

Since most previous work on bubble oscillation has 
used an acoustic force rather than vibration to levitate 
and modulate the volume and shape of the bubble, 
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any literature review of bubble oscillation phenomena 
is incomplete without citing such studies. As well, 
some liquid droplet oscillation studies are cited here 
because of the similar physics governing bubble and 
drop shape oscillations. Free shape oscillations of 
bubbles and drops within another fluid were first 
studied by Rayleigh [5] and Lamb [6] for small 
amplitude oscillations of inviscid fluids. Since then, 
expressions for oscillation frequency have been 
expanded to account for fluid viscosities [7] and 
moderate and large oscillations [8, 9]. Effect of 
amplitude of oscillations on the oscillation frequency 
and the decay factor of oscillations was investigated 
by Mashayek and Ashgriz [10] in a study considering 
small to large amplitude oscillations for fluids with 
various viscosities. Internal flow within the drop was 
also studied in their work to describe the mechanism 
of drop shape oscillations. An important feature of 
large amplitude oscillations (ΔD/D>0.1), where D is 
the bubble/droplet diameter and ΔD is the variation in 
diameter, is the appearance of nonlinear oscillations 
that cause different modes of oscillations to interact 
[11-13]. Energy transfer between different modes of 
oscillations (modes 2, 3, 4, 6) have been reported in 
studies considering the shape oscillation of a liquid 
droplet under acoustic forcing, while neglecting 
translational motion [14, 15].  

When translational motion is considered for a liquid 
droplet, the coupling of this motion and the shape 
variation of the droplet makes the motion highly 
nonlinear and possibly chaotic [16], which means that 
small changes in initial shape and/or location of a 
droplet affect its response. A chaotic response 
exhibits non-repeating and aperiodic shapes and 
motion, instead of regular oscillations.  

As the amplitude of the oscillations of a bubble 
increases, surface tension cannot maintain the 
equilibrium spherical shape and at the same time, 
chaotic translational motion appears. This was first 
referred to as the "erratic dancing of bubbles” [17]. In 
addition to the pressure variation due to external 
forcing, the shape oscillation itself propels the bubble 
due to asymmetries associated with odd harmonics 
which couple two nonlinear motions [18]. Doinikov 
[19] studied all three possible motions for a bubble: 
volume oscillations, shape oscillations, and 
translational motion, for a bubble levitated in an 
acoustic field, and concluded that any initial 
disturbance of any of the three components of the 
motion causes excitation and dynamic response of the 
other two. This coupling among nonlinear motions 
yielded a chaotic bubble response. In the case of large 
amplitude asymmetric shape oscillations, the inertia 
force on the bubble from the surrounding liquid can 

form a liquid jet within the bubble core. When the 
density ratio between two fluids is large (e.g. 
1000/1), the liquid jet can penetrate into the bubble, 
resulting in a pierced toroidal-shape bubble with a 
liquid jet within its core [20]. Bubble piercing makes 
the dynamics of a chaotic response even more 
complex. 

Studies of single bubble response under forced 
vibration are usually limited to the translational 
response of the bubble, neglecting shape deformation. 
Translational motion has been shown to have the 
same frequency as the forcing vibration, and the 
amplitude of translational motion varies linearly with 
the forcing amplitude [21-23]. An experimental study 
considering both shape variation and translational 
motion showed that bubble response is nonlinear for 
large amplitude oscillations, and that a bubble will 
breakup if the forcing is large enough [24]. Details of 
the bubble dynamics, motion, and breakup 
mechanism were not provided.  

The present work focuses on an understanding of the 
bubble dynamics, shape oscillations and translational 
motion of a bubble under forced vibration. A 3D 
numerical model was used to model the bubble 
behavior in response to the forcing. Regular and 
chaotic responses are characterized and the 
mechanism of bubble piercing in the case of large 
amplitude oscillations is described. 

II. NUMERICAL METHODOLOGY 

The equations governing the motion of 
incompressible bubbles in a liquid domain are the 
mass and momentum conservation equations (the 
energy equation is not needed since adiabatic and 
isothermal conditions are assumed), 

׏ · ሬܸԦ ൌ 0              [1] 

ߩ ቀడ௏ሬሬԦ

డ௧
൅ ሬܸԦ · ሬܸԦቁ׏ ൌ െ݌׏ ൅ ଶVሬሬԦ׏ߤ2 ൅ ρgሬԦ ൅ σκδሬ݊Ԧ    [2] 

where ሬܸԦ is the velocity, p is the pressure, ρ is the 
density and μ is the viscosity of the fluids. Ԧ݃ is the 
gravitational acceleration. The forced vibration is 
imposed by setting Ԧ݃ ൌ ݃଴ܿݏ݋ሺ2ݐ݂ߨሻ with ݃଴ ൌ
 ሻଶ where ݃଴ is the acceleration amplitude, A is݂ߨሺ2ܣ
the vibration displacement amplitude and f is the 
vibration frequency. One-directional vibration is 
assumed. The last term in the momentum 
conservation equation corresponds to the surface 
tension force. σ is surface tension coefficient and κ is 
the interface curvature. δ is the Dirac delta function 
which is zero in cells away from the liquid-gas 
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interface. ሬ݊Ԧ corresponds to the unit vector normal to 
the interface. The interface between the liquid and the 
gas is captured using a level set algorithm, in which a 
function, φ, is defined such that it has a zero value at 
the interface. We assume φ < 0 in the gas region and 
φ > 0 in the liquid region. Therefore we have, 

The unit normal on the interface, pointing into the 
liquid, and the curvature of the interface, are: 

ሬ݊Ԧ ൌ ఝ׏
|ఝ׏|

ቚ
ఝୀ଴

               [3] 

ߢ    ൌ ׏ · ቀ ఝ׏
|ఝ׏|

ቁ
ఝୀ଴

             [4] 

Since the interface moves with the fluids, the 
evolution of φ is given by, 

డఝ
డ௧

൅ ሬܸԦ · ߮׏ ൌ 0                [5] 

Details of the numerical method and calculation of 
properties within the cells containing an interface 
between the liquid and gas can be found in [25]. 
Equations 1,2, and 5 are discretized on collocated 
mesh of uniform square cells. A resolution of 64 cells 
per bubble diameter was used for all results presented 
in this work, which is Δx=Δy=Δz=0.0625 mm for a 
bubble diameter of D=4 mm. To make the solution 
stable, time steps were limited to Δt<2×10-5 sec.  

The conservation of momentum equation can be non-
dimensionalized by defining the following non-
dimensional variables: כݐ ؠ כሬܸԦ ,݂ݐ ؠ ሬܸԦ ൗ݂ܦ , 
כ݌ ؠ ݌ܦ ⁄ߪ , and Ԧ݃଴

כ ؠ Ԧ݃଴ ⁄ଶ݂ܦ , and by introducing a 
characteristic velocity ܷ ؠ  and a characteristic ݂ܣ
acceleration ܽ ؠ  ,ଶ. Equation (2) then becomes݂ܣ

డ௏ሬሬԦכ

డ௧כ ൅ ሬܸԦכ · כሬܸԦ׏ ൌ െ ஺
஽

ଵ
஻௢

כ݌׏ ൅ ஺
஽

ଶ
ோ௘

ଶ׏ ሬܸԦכ ൅

ଶߨ4                                 ஺
஽

ሻ ൅כݐߨሺ2ݏ݋ܿ ஺
஽

఑כఋ௡ሬԦכ

஻௢
     [6] 

where ܣ ⁄ܦ  is the ratio of the vibration amplitude to 
the bubble diameter, ܴ݁ ൌ ܦܷߩ ⁄ߤ  is the Reynolds 
number (ratio of the inertia force to the viscous 
force), and ݋ܤ ൌ ଶܦܽߩ ⁄ߪ   is the Bond number (the 
ratio of the applied body force to the surface tension 
force). A small value of Bo implies that the surface 
tension will maintain a spherical bubble shape; as Bo 
increases, the bubble will begin to deform.  

In this work we consider the effect of Bo and A/D on 
the bubble dynamics. Viscous effects are not 
significant to this problem, and as a result, there is no 
discussion of the Reynolds number effect. 

III. RESULTS AND DISCUSION 

A bubble with a diameter D=4 mm is centered in a 
container of size 10×20×10 mm (respectively in the 
x, y, and z-directions). Water and air are assumed as 
the two fluids, with properties of ρl=1000 kg/m3, 
ρg=1 kg/m3, μl=10-3 Pa.s, μg=10-5 Pa.s, and σ=0.073 
N/m. Subscripts “l” and “g” correspond to liquid and 
gas, respectively. The container is vibrated in the y-
direction. All boundary conditions are assumed to be 
no-slip walls. Depending on the amplitude and 
frequency of the oscillations, A/D and Bo, the bubble 
response ranges from a linear regular behavior to 
nonlinear large amplitude oscillations leading to 
bubble piercing.  

Assuming a cosine vibration beginning with an 
upward acceleration, the induced buoyancy force will 
be initially downward. As a result the bubble moves 
downward and due to the incompressibility, pushes 
the surrounding liquid upward. Since the geometry 
and the applied force are the same in the x- and z-
directions, the flow field will be identical in these 
directions. During the second quarter period, the 
induced acceleration is downward, resulting in an 
upward buoyancy force which decelerates the 
downward motion of the bubble. At t=T/2, the bubble 
centre of mass comes to rest, although the flow field 
is not zero within and around the bubble. The upward 
buoyancy force continues during the third quarter 
period, resulting in an upward acceleration of the 
bubble. During the last quarter period, the buoyancy 
force changes to downward and decelerates the 
upward motion of the bubble, and results in a zero 
velocity for the centre of mass at t=T. Although the 
bubble starts the next oscillation period from a zero 
centre of mass velocity and experiences the same 
forcing, the flow field and shape of the bubble are 
different at t=T than at t=0, when the spherical 
bubble had zero velocity. Depending on the deviation 
from the spherical shape at the end of each period, 
the forcing during the next oscillation period would 
further deform the bubble shape. 

Regular and Chaotic Oscillations 

To illustrate the effect of A/D and Bo, two cases are 
presented: a small amplitude case with A/D=0.02, 
and Bo=0.2 and a large amplitude case with A/D=0.1 
and Bo=0.5. The Reynolds numbers for these cases 
are 34.2 and 120.8 for small and large amplitude 
cases, respectively. Figures 1 and 2 illustrate the 
shape of the bubble as well as the velocity vectors 
and velocity magnitude contours for the small and 
large amplitude cases, respectively. Bubble shape, 
velocity vectors, and contours are shown at t=T/4, 
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T/2. 3T/4, and T. For Bo=0.2 and A/D=0.02 the 
bubble shape remains almost spherical during the 
oscillation, while for Bo=0.5 and A/D=0.1 a dimple 
forms on the top surface of the bubble at t=T/2, that 
results from the inertia force applied by pushing the 
fluid above it. At t=3T/4 the bubble is squeezed and 
largely deformed from its initial shape. During the 
last quarter period, when the bubble moves upward 
while decelerating, the liquid pushes the bottom of 
the bubble, and forms a dimple there. A comparison 
of the velocity magnitudes at corresponding times 
between two cases also shows that higher forcing 
results in higher bubble velocities. During successive 
oscillations, large amplitude oscillations continue for 
the Bo=0.5 and A/D=0.1 case, and the bubble 
behavior becomes chaotic, while in the small 
amplitude case, the surface tension force is strong 
enough to maintain the spherical shape of the bubble.  

    

    

Figure 1: Bubble shape, velocity vectors, and velocity 
magnitude contours for Bo=0.2 and 
A/D=0.02, (a) t=T/4, (b) t=T/2, (c) t=3T/4, 
(d) t=T 

To characterize the shape oscillation for these two 
cases, the bubble shapes are decomposed into 
Legendre polynomials. If the distance from any point 
on the bubble surface to the centre of mass of the 
bubble is denoted by r 

ݎ ൌ 2/ܦ ൅ ∑ ܿ௡ሺݐሻ ௡ܲሺcos ሻஶߠ
௡ୀ଴               [7] 

where D is bubble diameter, ௡ܲሺܿݏ݋  ሻ is the nthߠ
mode harmonic, and cn is the amplitude of the nth 
harmonic. θ is the polar angle in spherical 
coordinates. Equations for modes 2 and 3 can be 
calculated as follows: 

ଶܲሺܿߠݏ݋ሻ ൌ ଵ
ଶ

ሺ3ܿݏ݋ଶߠ െ 1ሻ  

ଷܲሺܿߠݏ݋ሻ ൌ ଵ
ଶ

ሺ5ܿݏ݋ଷߠ െ   ሻߠݏ݋3ܿ
 

 

 

Figure 2: Bubble shape, velocity vectors, and velocity 
magnitude contours for Bo=0.5 and 
A/D=0.1, (a) t=T/4, (b) t=T/2, (c) t=3T/4, 
(d) t=T 

Even harmonics (n = 0, 2, …) produce shapes which 
are symmetric with respect to the center of mass; odd 
harmonics (n = 1, 3, …) are symmetric about the 
vertical line passing through the center of mass. The 
time variation of the harmonic amplitudes, cn, can be 
used to discern whether the bubble oscillations and 
deformations are regular or chaotic. If the values of cn 
at a certain time in successive oscillations remain 
constant, the shape will be the same and the 
oscillations are regular. On the other hand, if the 
values of cn do not converge to a constant value but 
vary at a certain time during consecutive oscillations, 
the bubble behavior is chaotic and non-repeating. In 
this section, the first 10 harmonics were calculated. 
The first two coefficients, c0 and c1, were set to zero 
because c0 reflects volume oscillation, which was not 
considered, and c1 is associated with the bubble 
center of mass motion. c2 to c9 were calculated from 
the numerical model results using a least squares 
algorithm [26]. Figures 3 and 4 illustrate the first two 
coefficients, c2 and c3, non-dimensionalized by 
bubble diameter, for the small and large amplitude 
cases, respectively. Coefficients are presented at 
times t=nT (n=1,2,….,50) which means that the 
shape of the bubble at the end of each cycle for the 
first 50 cycles is considered.  

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 3:Time variation of non-dimensional (a) c2 
and  (b) c3 for Bo=0.2 and A/D=0.02, 
oscillations are regular as the coefficients 
converge to constant values. 

 

 

Figure 4:Time variation of non-dimensional (a) c2 
and  (b) c3 for Bo=0.5 and A/D=0.1, 
oscillations are chaotic as there is no 
convergence to a constant value. 

For Bo=0.2 and A/D=0.02, the Legendre coefficients 
converge: c2/D converges to a value of  -0.013 
indicating that at the end of each cycle, the bubble 
shape is slightly oblate, while the convergence of 
c3/D to zero indicates that the third mode does not 
contribute to the bubble shape. For Bo=0.5 and 
A/D=0.1, c2 and c3 are about 10% of the bubble 
diameter, an order of magnitude higher than the small 
amplitude coefficients, and there is no convergence 
after 50 cycles. In this case, the shape variation is 
nonlinear and non-repeating. Also the excitation of 
the third mode, which is asymmetric, results in 
different shape variations on the top and the bottom 
parts of the bubble; surface tension cannot maintain 
the symmetric bubble shape, and the bubble behavior 
becomes chaotic.  

Since the shape oscillation and translational motion 
are coupled, the regular and chaotic responses of a 
bubble can also be observed by monitoring the 
location of the bubble centre of mass. This is 
illustrated in Figure 5 for both cases. The variation of 
the centre of mass in the y-direction is shown, as the 
centre of mass location does not change with time in 
the two other directions. The origin, y=0, is located in 
the middle of the domain, and the location of the 
bubble with time is plotted in mm. For the small 

amplitude oscillations, the bubble drifts about 0.1 
mm downward and then the centre of mass locks in 
place and oscillates about that position. On the other 
hand, for Bo=0.5 and A/D=0.1 bubble drift is large 
and there is no single position about which the bubble 
oscillates. The bubble drifts up and down in the first 
25 cycles, and then drifts downward dramatically 
demonstrating a chaotic translational motion. 

 

Figure 5: Bubble centre of mass variation with time 
in y-direction, (a) Bo=0.2, A/D=0.02, (b) 
Bo=0.5, A/D=0.1 

Bubble Piercing 

The fact that the bubble shape becomes nonlinear, 
chaotic, and highly deformed provides the 
opportunity for bubble breakup. It has been observed 
that due to the inertia of the surrounding liquid for 
bubbles in acoustic fields undergoing large 
deformations, a liquid jet can form within the core of 
the bubble, resulting in a pierced bubble with a 
toroidal shape [20]. This problem is studied here for a 
bubble undergoing forced vibration. The forcing is 
increased to Bo=0.7 and A/D=0.125. Figure 6 
illustrates the shape of the bubble as well as velocity 
vectors at certain times for this case. Vectors are 
plotted uniformly and velocity magnitude is 
illustrated by its contour. 

During the first quarter period, while the bubble 
moves downward, the liquid which pushes on the top 
part of the bubble causes higher bubble velocities 
close to this region. As well, a very small dimple is 
formed on the top of the bubble. During the 
deceleration of the bubble in the second quarter 
period, the bubble tends to slow down while the 
denser liquid pushes on the top. The inertia force 
from the liquid initiates and develops a liquid jet 
within the core of the bubble. In addition to the liquid 
inertia force, the Rayleigh-Taylor (R-T) instability 
condition causes the liquid jet to form rapidly during 
the second quarter period. The R-T instability occurs 
when there is an interface between two fluids of 
different densities located in an accelerating field. If 
the acceleration and density gradient vectors have the 
same direction, the interface between two fluids will 

(a) (b) 

(a) (b) 

(a) (b) 
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be stable. But, if the acceleration and density gradient 
vectors are in opposite directions, then the interface 
between the two fluids will be unstable and small 
disturbances on the interface will grow. During the 
second quarter period, the acceleration is downward 
while the density gradient vector is upward on the top 
surface of the bubble, i.e. the heavier fluid is on top 
of the lighter fluid. As a result, the top surface of the 
bubble is unstable based on R-T theory, and any 
disturbance (which is the dimple formed on the top 
surface due to the fluid inertia) will grow in time. It 
can be seen that the liquid jet develops fast during 
this quarter period. (It should be mentioned that 
based on R-T theory the bottom surface of the bubble 
is stable). The unstable condition for the top surface 
continues during the third quarter period as the 
direction of acceleration remains downward. At 
t=0.66T, the front of the liquid jet contacts the 
bottom surface of the bubble, forming a pierced 
bubble with a toroidal shape. 

Viscous Effects 

It was mentioned that viscous forces and 
consequently the Reynolds number are not important 
in this case and water viscosity is not large enough to 
affect the bubble behavior. To demonstrate this, in 
this section the case of Bo=0.7 and A/D=0.125 is 
presented assuming both fluids to be inviscid. This 
was the case which resulted in bubble piercing. 
Simulation results show that similar to the viscous 
case, the liquid jet starts to form on the top surface of 
the bubble and penetrates the core of the bubble, 
resulting in a pierced bubble. The bubble shape as 
well as the flow field and velocity magnitude 
contours are illustrated in Figure7 for the inviscid 
case at t=0.35T and t=0.55T, which can be compared 
to corresponding results of the viscous case. 
Although there are small differences in the velocity 
magnitude contours, the viscous effect is negligible 
as the shapes of the bubbles are very similar in two 
cases. To compare the time evolution of the liquid jet 
penetration in the two cases, Figure8 illustrates the 
distance from the front of the liquid jet to the bottom 
of the container. In the inviscid case, the jet front is 
always further ahead but the difference is very small. 
The maximum difference between the two cases is 
about 0.134 mm, which is about two cell widths. 
Based on this comparison, Bo and A/D are clearly the 
main non-dimensional numbers governing this 
bubble oscillation problem.  

 

 

 

  

  

  

Figure 6: Bubble piercing, bubble shape, velocity 
vectors, and velocity magnitude contours for 
Bo=0.7 and A/D=0.125 at (a) t=0.25T, (b) 
t=0.35T, (c) t=0.45T, (d) t=0.5T, (e) 
t=0.55T, (f) t=0.66T 

 

  

Figure 7: Bubble shape, velocity vectors, and velocity 
magnitude contours for Bo=0.7 and 
A/D=0.125 at (a) t=0.35T, (b) t=0.55T. Both 
fluids are assumed to be inviscid. Compared 
to Figure 6 (b) and (e) viscous forces have 
negligible effects. 

 

 

(a) (b) 

(c) (d) 

(e) (f) 

(a) (b) 
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Figure 8: The variation of the distance from the liquid 
jet front to the container bottom with time, 
for the viscous and inviscid cases. 

Regular oscillation-Chaotic-Piercing map 

Since A/D and Bo are the two governing non-
dimensional numbers for the bubble oscillation 
problem, a parametric study was performed to predict 
the bubble response to forced vibration at various 
A/D and Bo numbers. Figure 9 illustrates a summary 
of the results. Three types of responses are 
characterized: regular oscillations, chaotic 
oscillations without piercing, and chaotic oscillation 
with piercing. Piercing cases are chaotic, in which the 
shape variation and forcing is large enough to pierce 
the bubble. Three lines are also shown in this Figure. 
These are constant second, third, and fourth mode 
resonant frequencies for an air bubble (D=4 mm) in 
water [6]. The corresponding frequencies are 52.6, 
96, and 144 Hz, respectively. If the bubble is forced 
to oscillate at either of the resonance frequencies, the 
corresponding mode would excite and large 
amplitude oscillations would occur.   

Regular oscillations happen at low amplitudes, A/D ≤ 
0.08, and small buoyancy forces, Bo ≤ 0.4. In these 
cases, the shape of the bubble does not undergo large 
amplitude oscillations, and small amplitude second 
mode oscillations are observed. The bubble oscillates 
between small amplitude oblate and prolate shapes, 
and surface tension force is strong enough to 
maintain an equilibrium shape of the bubble. Two 
chaotic-no piercing cases cab be observed within the 
regular region, Bo=0.4, A/D=0.02 and Bo=0.4, 
A/D=0.05. These two cases coincide with the third 
and fourth mode resonance frequencies. The forced 
oscillation excites large amplitude shape oscillations 
in these cases, while in a larger amplitude case at the 
same Bond number, the oscillations turn back to 
regular as the forcing frequency is different from the 
resonant frequencies. The triangular points 
correspond to cases in which oscillations are 

nonlinear with large amplitudes, but there is no 
piercing of the bubble. Large amplitude shape 
oscillations make the bubble response chaotic as 
described for the case with Bo=0.5 and A/D=0.1. 
Due to the large shape deformations, the detachment 
of small bubbles from the main bubble was observed 
in some of the no-piercing cases. For the no-piercing 
cases, the oscillations were imposed for 10 cycles 
without an occurrence of piercing.  

As the amplitude of the oscillations and the Bo 
number increase, the inertia force from the 
surrounding liquid as well as the R-T instability cause 
the bubble to be pierced. Simulations were stopped 
when piercing occurred. Due to the chaotic response 
of the bubble to large amplitude oscillations, the 
border between no-piercing and piercing cases is not 
always predictable. For instance, for Bo=0.6, the 
bubble pierces for A/D=0.03, 0.04, and 0.05 while no 
piercing occurs for larger amplitudes of A/D=0.06, 
0.07, and 0.08. Analysis of the bubble response 
showed that the shape of the bubble also has a 
significant role in the occurrence of piercing. Since 
the shape variation is chaotic, the case with Bo=0.6 
and A/D=0.05 results in piercing while with the same 
Bo and A/D=0.06 no piercing is observed. 

Summarizing our understanding of the occurrence of 
bubble piercing: 

i. Non-symmetric shape oscillations are 
required for bubble piercing to occur. Non-
symmetric shapes are excited when the 
amplitude of the oscillations is large such 
that the surface tension cannot maintain the 
equilibrium shape of the bubble. Large 
amplitude shape oscillations which are 
excited due to large amplitude vibrations, 
large Bo, or the coincidence of the forcing 
frequency with one of the resonance 
frequencies, are necessary conditions for the 
occurrence of bubble piercing. 

ii. Due to the large density ratio between water 
and air, the inertia force from the liquid can 
highly deform the bubble interface, 
especially during the deceleration phases of 
the motion. The parts of the interface where 
the liquid pushes the gas are more 
susceptible to the force. The initiation of the 
formation of the piercing liquid jet is due to 
the inertia force of the liquid.  

iii. The R-T instability enhances the penetration 
of the liquid jet within the bubble core. 
Depending on the direction of the 
acceleration, the top and bottom parts of the 
bubble are unstable due to the R-T 
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instability. In the presence of a disturbance, 
which is usually a dimple formed due to the 
fluid inertia, the R-T instability can cause 
the liquid jet to develop rapidly.  

 

Figure 9: Bubble response to forced vibrations as a 
function of Bo and A/D. Three types of 
responses were characterized, regular 
oscillation, chaotic oscillation without 
piercing, and chaotic oscillation with 
piercing. The straight lines are of constant 
frequency, which correspond to the first 
three resonant frequencies modes. 

 

IV. CONCLUSION 

The response of a single air bubble in a container of 
water subject to a forced vibration was studied using 
a numerical 3D model. The coupled shape 
oscillations of the bubble and its translational motion 
were considered, but volume oscillations were 
neglected. The Bond number and the ratio of 
vibration amplitude to bubble diameter, A/D, were 
found to be the two governing non-dimensional 
numbers. Bubble response was characterized in three 
categories. For small Bo and A/D, the bubble 
oscillates regularly and the translational motion also 
shows a regular oscillatory motion. The bubble 
oscillates between oblate and prolate shapes and there 
is no appearance of third mode oscillations. As Bo 
and A/D increase, an asymmetric third mode appears 
and the bubble shape shows nonlinear, large 
amplitude, and chaotic oscillations. The amplitude of 
different mode oscillations can be as large as 10% of 
the bubble diameter. If the forcing increases, bubble 

piercing occurs in which a liquid jet is formed and 
penetrates the bubble core, resulting in a pierced 
bubble around a liquid core. Chaotic shape 
oscillation, the inertia of the liquid and the Rayleigh-
Taylor instability are responsible for the occurrence 
of bubble piercing. Finally, a map of bubble 
behaviour versus Bo and A/D was presented. 
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