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ABSTRACT

This paper presents the method of volume averaging
for the microscopic energy equations of a moving bed
heat exchanger. Macroscopic expressions, when both
the interstitial fluid and solids are in motion, are de-
veloped and mathematical constraints are identified.
A one-equation model is then constructed describing
energy transport in the material. Major mathemati-
cal assumptions associated with this novel develop-
ment are clearly stated and identified. This analysis
demonstrates the implications associated with assum-
ing a one-equation model, for describing energy trans-
port in flowing granular materials.

1 INTRODUCTION

Many industrial processes hinge on the controlled
heating and cooling of granular solids. In the food in-
dustry, controlled heat sterilization of powder products
is particularly important when dealing with tempera-
ture sensitive peptides [1]. In the petrochemical in-
dustry, heating of granular solids affects the recovery
from oil shale [2] while in nickel production, tempera-
ture control ensures efficient deposition from gases [3].
Effective heat transport in particulates also influences
the emission abatement efficiency of SOx and NOx in
certain processes [4]. Very recently, solids have been
proposed as a heat storage medium for concentrated
solar radiation [5].

An important heat exchanger used in the above appli-
cations is the moving bed heat exchanger (MBHE). In
these systems, moving particulates consisting of an in-
terstitial fluid and a solid phase flow on one side of the
exchanger while indirectly exchanging energy with a
heating or cooling fluid. MBHE types include both
parallel-plate and shell and tube, while flow arrange-
ments may be counter-current, parallel, or cross-flow.
This versatility drives their low investment cost, en-
ergy consumption and maintenance requirements [6].

A complete understanding of the physics of heat trans-

fer in MBHEs has yet to be attained. This was a chal-
lenge in the area of packed beds (PBs) until a rigorous
mathematical approach known as volume averaging
(VA) was adopted [7]. At its core, VA acts as a trans-
formation which upscales microscopic equations to
produce macroscopic counterparts associated with rep-
resentative elementary volumes (REVs). This proce-
dure of spatial smoothing is in its infancy with respect
to MBHEs, where work by Pivem and de Lemos [6]
stands as an early demonstration of the analysis. Un-
like PBs, convection of transport properties also occurs
due to solid flow in MBHEs. This additional mode of
transport increases the complexity of the equations to
be averaged.

To date, much of the work regarding volume averaging
for moving bed heat exchangers has focused on the de-
velopment of thermal non-equilibrium models. How-
ever, the mathematical constraints and validity of ther-
mal equilibrium have yet to be explored to the same
level of detail presented for PBs ([7], [8]). This exer-
cise is overdue as pivotal research in MBHEs relies on
this assumption ([9], [10], [11]).

The purpose of the work is to present the volume aver-
aging of the microscopic energy equations when solids
are in motion. Steps required to produce a one energy
equation model for an MBHE are demonstrated, while
mathematical constraints are identified along with im-
portant assumptions. Investigations of this kind are
critical, given that analytical solutions can be con-
ceived for describing MBHEs operating in the realm
of the one-equation model. A complete analysis of this
type would produce correlations for thermal rating and
sizing.

2 GOVERNING ENERGY EQUATIONS IN
MBHES

Moving beds differ from packed beds in that the solids
are in motion. A simplistic diagram depicting the gen-
eral conditions of interest (at an REV level) is shown



Figure 1: REV for a fluid-solid system in an MBHE

in Figure 1.

Assuming constant thermo-physical properties (heat
capacity, Cp, density, ρ, and thermal conductivity, k),
negligible radiation and conversion of mechanical to
thermal energy, the governing equations for an MBHE
can be formulated as follows:

Fluid Phase Energy Equation

(ρCp) f
∂Tf

∂t
+(ρCp) f ∇ · (u f Tf ) = ∇ · (k f ∇Tf ) (1)

Solid Phase Energy Equation

(ρCp)s
∂Ts

∂t
+(ρCp)s∇ · (usTs) = ∇ · (ks∇Ts) (2)

At a microscopic level, the problem is complemented
by several boundary conditions. Analogous to the
work of Whitaker for packed beds ([7], Sec. 2.1), the
following expressions apply to an MBHE:

BC#1 - Temperature Continuity at the Solid-Fluid
Interface

Tf = Ts at A f s (3)

BC#2 - Flux Balance at the Solid-Fluid Interface

−n f s · k f ∇Tf =−n f s · ks∇Ts at A f s (4)

BC#3 - Impermeable and Moving Fluid Interface

ρ f (u f −w) ·n f s = 0 at A f s (5)

BC#4 - Impermeable and Moving Solid Interface

ρs(us−w) ·ns f = 0 at As f (6)

where w ·ns f is the speed of displacement of the fluid-
solid interface.

3 VOLUME AVERAGING
FUNDAMENTALS

Volume averaging begins by associating every point in
a global domain with REVs considered invariant with
time and space [7]. A position vector x locates the
REV centroids, while a relative position vector y de-
fines any point in the phase of interest within the REV.
Subscripts on y identify the phase being specified ([7],
Sec. 1.2). Volume integration follows and the superfi-
cial average of a property is defined as:

〈ψβ〉=
1
V

∫
Vβ(t)

ψβdV (7)

where the β subscript details the phase of interest, ψβ

the microscopic property in the β phase, Vβ(t) the vol-
ume of β in the REV, V the volume of the REV, and
〈ψβ〉 the superficial property at the REV centroid.

Intrinsic and superficial properties are connected
through the following relation:

〈ψβ〉= εβ〈ψβ〉β (8)

where εβ is the volume fraction of the β-phase in the
REV, and 〈ψβ〉β is the intrinsic property.

Two supplementary theorems are required to com-
pletely volume average the microscopic energy equa-
tions. The first is spatial averaging, a three dimen-
sional representation of the Leibniz rule ([7], [12],
[13], [14], [15], [16], [17]) given by:

〈∇ψβ〉= ∇〈ψβ〉+
1
V

∫
Aβα(t)

nβαψβdA (9)

where nβα is the normal unit vector pointing from the
β to the α phase (second phase in the REV), and Aβα(t)
is the interfacial area between phases.

The second theorem is the general transport theorem:〈
∂ψβ

∂t

〉
=

∂〈ψβ〉
∂t
− 1

V

∫
Aβα(t)

ψβw ·nβαdA (10)

where w ·nβα is the speed of displacement of the inter-
face.

4 VOLUME AVERAGING OF MBHE
ENERGY EQUATIONS

Since Eqs. 1 and 2 have equivalent forms, only the de-
velopment of the fluid equation is presented. Volume
averaging Eq. 1 yields:

(ρCp) f
1
V

∫
V f (t)

[
∂Tf

∂t
+∇ · (u f Tf )

]
dV =

1
V

∫
V f (t)

[∇ · (k f ∇Tf )]dV
(11)



4.1 Transient Energy Term

To interchange the order of integration and differenti-
ation in the transient term in Eq. 11, the general trans-
port theorem is applied leading to〈

∂Tf

∂t

〉
=

∂〈Tf 〉
∂t
− 1

V

∫
A f s(t)

Tf w ·n f sdA (12)

Introducing Eq. 8 results in:〈
∂Tf

∂t

〉
=

∂(ε f 〈Tf 〉 f )

∂t
− 1

V

∫
A f s(t)

Tf w ·n f sdA (13)

4.2 Convective Energy Term

Applying the vector form of the spatial averaging the-
orem to the convective term in Eq. 11, yields the fol-
lowing:

〈∇ · (u f Tf )〉= ∇ · 〈u f Tf 〉+
1
V

∫
A f s(t)

n f s · (u f Tf )dA

(14)

To analyze this expression further, a spatial decom-
position of variables is proposed. Intrinsic and point
properties are linked via spatial deviation terms as de-
tailed by Gray [18]. The following correlations are put
forward:

Tf = 〈Tf 〉 f + T̃f (15)

u f = 〈u f 〉 f + ũ f (16)

where T̃f and ũ f are the fluid spatial deviations of tem-
perature and velocity respectively.

Applying these expressions to the first term in Eq. 14
yields:

∇·〈u f Tf 〉=∇ ·〈〈Tf 〉 f 〈u f 〉 f +〈Tf 〉 f ũ f +T̃f 〈u f 〉 f +T̃f ũ f 〉
(17)

Following an analysis equivalent to that of Whitaker
([7], Sec. 3.2.3), where several Taylor series expan-
sions are applied, the following simplified expression
results:

〈u f Tf 〉= ε f 〈Tf 〉 f 〈u f 〉 f + 〈T̃f ũ f 〉 (18)

Substituting Eq. 18 into 14 provides:

〈∇ · (u f Tf )〉= ∇ · (ε f 〈Tf 〉 f 〈u f 〉 f )+∇ · 〈T̃f ũ f 〉

+
1
V

∫
A f s(t)

n f s · (u f Tf )dA
(19)

where ∇ · (ε f 〈Tf 〉 f 〈u f 〉 f ) and ∇ · 〈T̃f ũ f 〉 are the tradi-
tional convective and dispersive flux terms arising dur-
ing volume averaging.

4.3 Conductive Energy Term

Applying the vector form of the spatial averaging the-
orem to the conduction term in Eq. 11, we obtain:

〈∇ · (k f ∇Tf )〉= ∇ · 〈k f ∇Tf 〉+
1
V

∫
A f s(t)

n f s · k f ∇Tf dA

(20)
Implementing the theorem a second time, allows the
first term on the RHS of the expression to be written
as:

∇·〈k f ∇Tf 〉=∇·(k f ∇〈Tf 〉)+∇·
[

k f

(
1
V

∫
A f s(t)

n f sTf dA
)]

(21)
Collecting everything together (and substituting Eq. 8
as needed), a volume averaged conduction term of the
following form is found:

〈∇ · (k f ∇Tf )〉= ∇ · (k f ∇
(
ε f 〈Tf 〉 f ))

+∇ ·
[

k f

(
1
V

∫
A f s(t)

n f sTf dA
)]

+
1
V

∫
A f s(t)

n f s · k f ∇Tf dA

(22)

4.4 Volume Averaged Energy Balances

Equations 13, 19 and 22 can now be substituted into
11 to obtain the volume averaged equation for the fluid
phase. Carrying out the substitution and applying the
boundary condition for fluid impermeability, given by
Eq. 5, we obtain:

Volume Averaged Fluid Phase Energy Equation

(ρCp) f

[
∂(ε f 〈Tf 〉 f )

∂t
+∇ · (ε f 〈Tf 〉 f 〈u f 〉 f )+∇ · 〈T̃f ũ f 〉

]
= ∇ ·

[
k f

(
∇
(
ε f 〈Tf 〉 f )+ 1

V

∫
A f s(t)

n f sTf dA
)]

+
1
V

∫
A f s(t)

n f s · k f ∇Tf dA

(23)

An equivalent analysis of the solids microscopic en-
ergy balance reveals an analogous expression to Eq.
23 of the form:

Volume Averaged Solid Phase Energy Equation

(ρCp)s

[
∂(εs〈Ts〉s)

∂t
+∇ · (εs〈Ts〉s〈us〉s)+∇ · 〈T̃sũs〉

]
= ∇ ·

[
ks

(
∇(εs〈Ts〉s)+

1
V

∫
As f (t)

ns f TsdA
)]

+
1
V

∫
As f (t)

ns f · ks∇TsdA

(24)



5 ONE-EQUATION MODEL FOR
MBHES

Expressions 23 and 24 are now added together to move
towards a one-equation model. The following expres-
sion results after their addition, and the implementa-
tion of the flux BC given by Eq. 4:

(ρCp) f

[
∂(ε f 〈Tf 〉 f )

∂t
+∇ · (ε f 〈Tf 〉 f 〈u f 〉 f )+∇ · 〈T̃f ũ f 〉

]
+(ρCp)s

[
∂(εs〈Ts〉s)

∂t
+∇ · (εs〈Ts〉s〈us〉s)+∇ · 〈T̃sũs〉

]
= ∇ ·

[
k f

(
∇
(
ε f 〈Tf 〉 f )+ 1

V

∫
A f s(t)

n f sTf dA
)]

+∇ ·
[

ks

(
∇(εs〈Ts〉s)+

1
V

∫
As f (t)

ns f TsdA
)]

(25)

5.1 Constant Solid Velocity

We consider now the simplest case where the solids are
assumed to move at constant speed. From the spatial
decomposition relation for velocity, analogous to Eq.
16 but for the solids, the deviation term is assumed
negligible and we find:

us = 〈us〉s = constant; ũs = 0 (26)

5.2 Constant Porosity

An important supplementary assumption is that of con-
stant porosity:

ε f = constant; εs = constant (27)

This condition is reasonable in the free flowing domain
of the bulk material, but less so near walls and/or ob-
structions. A special analysis, of the style presented by
Ochoa-Tapia and Whitaker [19], would be required to
circumvent this limitation.

5.3 Incompressible Fluid

Constant thermo-physical properties were assumed for
both phases during the development of the microscopic
energy equations, and therefore the continuity equa-
tion for the fluid has the following form:

∇ · (u f ) = 0 (28)

Applying the spatial averaging theorem we find:

0 = ∇ · 〈u f 〉+
1
V

∫
A f s(t)

n f s ·u f dA (29)

From BCs#3 and #4, a supplementary relation can be
constructed at the fluid-solid interface of the following
form:

u f ·n f s = us ·n f s at A f s (30)

As demonstrated by Whitaker ([7], Sec. 1.3.1), the ze-
roeth order superficial spatial moment is the following:

∇ε f =−
1
V

∫
A f s(t)

n f sdA (31)

Given that constant porosity is assumed, the spatial
moment simplifies to:

0 =
1
V

∫
A f s(t)

n f sdA (32)

Applying the above relation in Eq. 29, alongside the
constant solids velocity assumption, we find the fol-
lowing volume averaged continuity equation:

∇ · 〈u f 〉 f = 0 (33)

5.4 Local Thermal Equilibrium

A final assumption is that of local thermal equilibrium
(LTE). The validity of this assumption can be explored
mathematically (see transient examples in packed beds
by Quintard and Whitaker [8]); however, this is left as
future work. Local thermal equilibrium implies equal
intrinsic temperature in both phases (at an REV level)
as follows:

〈Tf 〉 f = 〈Ts〉s = 〈T 〉 (34)

5.5 One Equation Model

Applying the equations (and associated assumptions)
detailed in sections 5.1-5.4 allows for Eq. 25 to be writ-
ten as:

[ε f (ρCp) f + εs(ρCp)s]
∂〈T 〉

∂t︸ ︷︷ ︸
Accumulation

+[ε f (ρCp) f 〈u f 〉 f + εs(ρCp)sus] ·∇〈T 〉︸ ︷︷ ︸
Convection

+

(ρCp) f ∇ · 〈T̃f ũ f 〉︸ ︷︷ ︸
Thermal Dispersion

= ∇ ·

(k f ε f + ksεs)∇〈T 〉︸ ︷︷ ︸
Conduction



+∇ ·

(k f − ks)

(
1
V

∫
A f s(t)

n f sTf dA
)

︸ ︷︷ ︸
Tortuosity



(35)



where the temperature continuity boundary condition,
given by Eq. 3, is used to simplify the area integral
terms.

As a final step, the integral within the tortuosity term
is evaluated further. Applying a spatial decomposition
of variables, we find:

1
V

∫
A f s(t)

n f sTf dA =
1
V

∫
A f s(t)

n f s〈T 〉dA

+
1
V

∫
A f s(t)

n f sT̃f dA
(36)

Following an analysis equivalent to that of Whitaker
([7], Sec. 1.3), where a Taylor series is used to expand
the volume averaged temperature, the following sim-
plified expression results:

1
V

∫
A f s(t)

n f sTf dA =
1
V

∫
A f s(t)

n f sT̃f dA (37)

subject to the mathematical constraints:

(k f ε f + ksεs)∇〈T 〉>> (k f − ks)〈T 〉∇ε f (38)

(k f ε f + ksεs)∇〈T 〉>> (k f − ks)∇〈y f 〉 ·∇〈T 〉 (39)

(k f ε f + ksεs)∇〈T 〉>> (k f − ks)
1
2

∇〈y f y f 〉 : ∇∇〈T 〉
(40)

Clearly the first inequality is met by virtue of the con-
stant porosity assumption. The latter two, however,
need to be kept in mind and explored further for mov-
ing solid systems. This analysis would follow a proce-
dure similar to that presented by Whitaker for packed
beds [7], and entails order of magnitude estimates.

Substituting Eq. 37 into 35, yields a one energy equa-
tion model for moving solids:

[ε f (ρCp) f + εs(ρCp)s]
∂〈T 〉

∂t︸ ︷︷ ︸
Accumulation

+[ε f (ρCp) f 〈u f 〉 f + εs(ρCp)sus] ·∇〈T 〉︸ ︷︷ ︸
Convection

+(ρCp) f ∇ · 〈T̃f ũ f 〉︸ ︷︷ ︸
Thermal Dispersion

= ∇ ·

(k f ε f + ksεs)∇〈T 〉︸ ︷︷ ︸
Conduction



+∇ ·

(k f − ks)

(
1
V

∫
A f s(t)

n f sT̃f dA
)

︸ ︷︷ ︸
Tortuosity


(41)

A closure problem remains to be developed in order to
link volume averaged and spatial deviation properties.
This entails proposing a REV micro-structure, and the
analysis of the resulting boundary value problem (see
[7]). However, the objectives of the current document
are now met. A governing one-equation model for
an MBHE has been formulated (for simplified condi-
tions,) and the major mathematical constraints in the
development have been identified.

6 CONCLUSIONS

This work presents the implementation of volume av-
eraging techniques to formulate the macroscopic en-
ergy balances for an MBHE. The mathematical analy-
sis required to obtain a one energy equation is demon-
strated. Inequalities, or constraints, associated with
these conditions are identified. Subsequent work will
examine the development of analytical solutions for
describing MBHEs operating in the realm of this one
energy equation.
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