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ABSTRACT

The normal impact of a liquid droplet onto a flat surface is
a two-dimensional phenomenon, and has been extensively
studied. But what of the impact of a droplet onto an inclined
surface, or any other more complicated surface geometry? We
present both numerical and experimental views of the impact of
a water droplet onto an incline and onto an edge. The
numerical model is an improved three-dimensionalization of
RIPPLE (LA-12007-MS), a VOF-based finite-volume code.
Model simulations are compared with sequences of photographs
of the impact of a water droplet. We discuss the model, in
particular improvements to the original RIPPLE, and the
implementation of boundary conditions at the contact line
between liquid and solid. We also present a quantitative
comparison of the model and experiment; agreement is good.

INTRODUCTION

The impact of a single droplet onto a solid surface is a
fundamental phenomenon in a variety of spray applications (e.g.
spray cooling, thermal spraying, spray forming). A common
characteristic of these processes is the dramatic deformation of
individual droplets as they strike upon solid surfaces. Almost
all previous studies of droplet impact have considered the two-
dimensional scenario of the normal impact of a droplet onto a
flat surface. Many aspects of such an impact have been
extensively studied: the effect of the initial Reynolds and
Weber numbers on the spread and possible recoil of the droplet
(Chandra and Avedisian, 1991; Fukai et al., 1995; Pasandideh-
Fard et al., 1996); heat transfer within the droplet and to or
from the solid surface (Zhao et al.,, 1996a and 1996b);
solidification of molten droplets impacting a cold surface
(Trapaga et al., 1992).

On the other hand, little is known of droplet impact
even onto an inclined surface, much less any arbitrary surface
geometry. For example, how do fluid droplets impact onto an
edge, or into a pore, or onto a curved surface?

We present numerical and experimental views of the
impact of a water droplet onto a 45° incline and onto a sharp
edge. Agreement between experiment and model is good. We
also describe the model, and the implementation of boundary
conditions.

EXPERIMENTAL TECHNIQUE

The technique used to photograph droplet impact is
presented in detail by Chandra and Avedisian (1991). In
summary, droplets are generated by pumping water through a
hypodermic needle and allowing them to detach under their own
weight. Droplets are uniformly 2 mm in diameter. A polished
stainless steel surface is placed 50 mm below the needle tip, so
that droplet velocity at impact is 1 m/s. A single 35 mm
photograph is taken of any one instant of an impact, as
determined by a set time delay between droplet release and
flash illumination. The photographs of a droplet at any one
instant are sufficiently repeatable from one droplet to the next
that a complete impact may be reconstructed from individual
photographs of different droplets.

For the impact of a droplet onto a 45° incline, we
measured liquid-solid contact angles and contact diameters
from enlarged photographs. Details of the measurement
technique have been presented by Pasandideh-Fard et al.
(1996). Most contact angles were readily measured to within +
3°. However, as we describe later, as the droplet slides down
the incline, a thin layer of fluid is dragged behind. The
receding contact angle decreases to approximately 20°, and the
corresponding error becomes proportionately larger.

NUMERICAL METHOD
Our numerical model is a 3D implementation of RIPPLE
(Kothe et al., 1991), originally a 2D Eulerian fixed-grid fluid
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dynamics code written specifically for free surface tflows with
surface tension. RIPPLE was chosen as the basis of our model
primarily for two reasons: (i) a novel approach to modeling
surface tension, which could readily be extended to three
dimensions: (ii) the capability to model gross fluid deformation.
including breakup. In the process of three-dimensionalizing the
original RIPPLE, we incorporated improvements to the model.
particularly to the algorithms which track the free surface and
evaluate surface tension.

Equations of conservation of mass and momentum
govern the flow of fluid within a droplet:
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V is the velocity vector, p the pressure, p the density, v the

kinematic viscosity and F, represents any body forces acting on

the fluid. Boundary conditions imposed on the equations
include the standard no-slip condition for fluid in contact with a
solid surface, the imposition of a contact angle at the contact
line between droplet and substrate, and specification of the
surface tension-induced pressure jump pg across the free

surface, according to Laplace’s equation:
ps = OK (3)

o represents the surface tension of the fluid and x the local
curvature of the free surface.

The equations are discretized in a typical control
volume formulation. Convective, viscous and surface tension
effects are evaluated explicitly, thus limiting the timestep by
which the solution may be advanced. Pressure is evaluated
implicitly at the end of each timestep to enforce mass
conservation. Details of the numerical discretization are similar
to those presented in the original documentation for RIPPLE
(Kothe et al., 1991).

The free surface is represented by a so-called Volume
of Fluid (VOF) function F, defined as equal to one within the
fluid and zero without. In discretized form. F represents the
fraction of a control volume filled with fluid: one for a full
control volume. zero for an empty control volume. and
0 <F <1 for a control volume containing a portion of the free
surface. Within this framework, the free surface is propagated
according to:
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In the original RIPPLE, equation (4) was discretized
according to the method of Hirt and Nichols (1981). We have
replaced this treatment in our model with a more accurate
scheme devised by Youngs (1984). Especially in 3D, accurate
discretizations are vital to offset the practical limits placed on
grid refinement. In Youngs' approach. the VOF distribution is
used to construct a geometric plane in each surface control
volume, corresponding to the local value of F and to the
direction of the normal to the interface. At each timestep, the
position of an interface plane and the velocities at the control
volume faces allow one to determine fluxes of F during the
timestep, and thereby the values of F at the new time level.

The second significant modification to the original
RIPPLE is an improved implementation of the Continuum
Surface Force (CSF) model (Brackbill et al., 1992) for
evaluating surface tension effects. Rather than impose equation
(3) as a discrete boundary condition for pressure at the free
surface, the CSF model considers the interface to be continuous,
and accounts for surface tension via an equivalent body force
on fluid near the free surface. Unfortunately, the original
RIPPLE contained an early implementation of the CSF model.
One characteristic of this implementation was a tendency to
induce spurious fluid motion in near-equilibrium surfaces
(Brackbill et al., 1992). In fact, the authors employed the
original RIPPLE in an early attempt to model the normal impact
of a water droplet onto a flat surface. The CSF model induced
very pronounced oscillations of the fluid, which became most
apparent as the simulated droplet vainly attempted to reach
some equilibrium configuration.

We have implemented several modifications to the
original CSF model, inspired by recent suggestions by Kothe et
al. (1996). We present here a short overview of our approach.

Surface tension forces IEST are evaluated only in

control volumes containing a portion of the free surface:
- A . <
Fsr =ox—n (5)
Vv

A is the free surface area contained within the control
volume. determined as a by-product of the VOF advection
algorithm of Youngs (1984). V is the volume of the control
volume and N is a control volume-centred unit normal directed

into the fluid.

primarily on the evaluation of accurate normals. since the
curvature K is evaluated as:

An accurate estimation of Fgp depends

2 Copyright © 1996 by ASME



(6)

Normal vectors N are first evaluated at control volume
vertices. according to:

V (N
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In practice, evaluating gradients of F can result in poor
estimations of the normals. One alternative is to first smooth.
or convolve, the F field (Brackbill et al., 1992). We employ a
radially-symmetric cosine function as the convolving kernel

8(F) to smooth to a radius of 2h:

o 3n _Tﬂf_| =
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Aleinov and Puckett (1995) pointed out recently that in

order to achieve convergence of N to a true value, that the
radius over which to smooth must be related to grid size AX by:

h~(Ax)Y; 0<g<1 9

In other words, as the grid is refined. smoothing must occur
over larger and larger stencils. For the two simulations
presented in this paper. smoothing was performed over a 5x5x5
stencil. A control volume-centred unit normal A is then
evaluated as the normalized average of the eight n at the
vertices of the control volume. This tends to yield more
accurate values of the normal N than averaging unit normals.

To evaluate x, we locate the centre of the interface
within the control volume, again as a by-product of the VOF
advection algorithm of Youngs (1984). A more accurate k is
then calculated at this location than at the centre of the control
volume. Like the calculation of the control volume-centred
normal. this is another example of biasing calculations towards
the true interface. where the magnitude of the normals is
greatest.

Finally, we obtain better results if we slightly smooth

the IEST . Like Aleinov and Puckett (1995). we simply employ
the same smoothing kernel as for the F field, except that

smoothing 1s contained within a smaller radius, limited to a
3x3x3 stencil.

RESULTS AND DISCUSSION

We present the results of two simulations, of a water
droplet of 2 mm diameter, impacting a surface at 1 m/s. Both
simulations were run on a square grid, with a control volume
length equal to 1/20 of the initial droplet diameter.

Figure 1 illustrates photographs and numerical views
of the impact of a water droplet onto a 45° incline. From the
complete set of photographs. we measured advancing and
receding contact angles (at the leading and trailing edges
respectively). This data is presented in Figure 2. The contact
angles were then imposed as a dynamic boundary condition on
the simulation. Contact angles about the perimeter of the
droplet were arbitrarily defined to vary linearly between the
advancing and receding angles. according to the longitudinal
position on the contact line.

The photographs and numerical views compare
reasonably well, especially at early times. Initially fluid spreads
almost uniformly about the point of impact (t =1 ms). A large
value of the contact angle at the top of the droplet reflects an
advancing contact line. The photograph at t=1 ms shows a
droplet which is nearly symmetric, and almost identical to a
corresponding droplet impacting normal to a flat surface.
Quickly, however, the momentum of the droplet and the force of
gravity begin to pull fluid down the incline. By t=2 ms, the
value of the contact angle at the top of the droplet is decreasing
quickly, as the contact line begins to recede. Nonetheless, the
droplet has spread enough in all directions that a ring of fluid
has formed about the perimeter. At the centre of the droplet, the
last of the falling fluid is still visible above the outer ring.

At t=5 ms, the bulk of the fluid is collecting at the
bottom of the splat, and the fluid is slowing, having flowed a
considerable distance down the incline. Only a thin wedge of
fluid remains above. Although it is difficult to see from the
views in Figure 1, the splat is still a ring, with fluid on the
periphery of the splat rather than at the centre. The view at
t =8 ms is of a droplet which has nearly stopped flowing down
the incline. Only the thin wedge of fluid at the top of the splat
is still moving downward. Surface tension now dominates.
working against the mass of fluid at the bottom of the splat. By
t=14 ms, the wedge at the top has nearly rejoined the main
body of fluid, and the droplet is approaching an equilibrium
shape. This is an example of a photograph from which a
receding contact angle measurement is difficult to obtain, as the
wedge of fluid thins. By t=20 ms. the droplet is still and at
equilibrium.

Figure 3 presents the droplet spread factor, defined as
the ratio of instantaneous liquid-solid contact diameter to initial
droplet diameter. The plot demonstrates excellent agreement
between experimental results and the numerical prediction.
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especially in view of our arbitrary contact angle specification
about the perimeter of the droplet.

Figure 4 illustrates photographs and numerical views
of the impact of a 2 mm water droplet onto a sharp edge. We
masked much of the cross-section of the surface when printing
the photographs in order to highlight the edge itself. We
arbitrarily selected the edge height to be one half of the droplet
diameter. We also shifted the point of impact by 0.3 mm
towards the top side of the edge, only because we wished to
model the breakup of the droplet. We did experiment with a
droplet centred exactly on the edge, but discovered that all of
the fluid was consistently pulled to the bottom side. With
regard to the contact angle boundary condition, we did not
measure experimental contact angles from photographs.
Instead, we used an approach similar to that of Fukai et. al.
(1995). We simply defined an advancing contact angle to be
110°, a receding angle to be 40° and interpolated linearly
between these angles for contact line velocities less than £ 0.05
m/s.

We illustrate several profiles of the droplet during the
early stages of deformation, as the droplet spreads over the top
side and flows over the edge. Admittedly, at t=14 ms, the

simulation is unable to predict the gap between the edge and the
fluid, likely due to the coarseness of the mesh. For the same
reason, the simulation is unable to articulate subtle variations of
the fluid surface. These details notwithstanding, agreement
between experiment and simulation is very good. By t=2 ms,
droplet spread has generated a ring of fluid on the top side
about the point of impact. By t=4 ms, a similar ring has
formed on the bottom side, and the edge itself has begun to
separate fluid on top from fluid on the bottom. By t=8 ms,
the droplet has broken into two, and all that remains is for the
droplet to reach an equilibrium position, illustrated at t=16
ms.

CONCLUSIONS

We have presented a 3D numerical model to simulate the
impact of droplets onto arbitrary surface geometries.

We also presented the results of two simulations, of the
impact of a water droplet onto a 45° incline and onto an edge.
Simulation results are compared with corresponding
photographs taken of actual droplet impacts. Agreement is very
good. Both the experimental and numerical results demonstrate
complex, asymmetric flows, very different from the impact of a
droplet normal to a flat surface.
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FIGURE 1. Impact of a water dropiet onto a 452 incline - experimental and numerical views.
[initial dropiet diameter = 2 mm; initial droplet velocity = 1 m/s]
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FIGURE 2. Advancing and receding contact angles - water droplet impact onto a 452 incline.
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FIGURE 3. Spread factor (instantaneous diameter / initial droplet diameter)
- water droplet impact onto a 452 incline.
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FIGURE 4. Impact of a water droplet onto an edge - experimental and numerical views.
[initial droplet diameter = 2 mm); initial droplet velocity = 1 m/s; edge height = 1 mm]
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