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Abstract

The impact of a water droplet on a stainless steel tube was studied using both numerical simulations and
experiments. A 3D numerical model of Bussmann et al. [1] for free-surface flows (such as an impacting droplet) was
extended to include internal obstacles (such as a solid tube) in the fluid computational domain. The results of the
model were compared with experimental photographs for the impact of a 2 mm water droplet on two tube sizes:
3.18 mm (0.125 in) and 6.35 mm (0.25 in) O.D.; the impact velocity was 1 m/s and 1.2 m/s on the two tubes,
respectively. The droplet impacting on the smaller tube size pinched off the tube surface. On the bigger tube size,
however, surface tension effects arrested droplet downward flow on the tube surface; as a result, there was no
droplet pinch off in this case. The good qualitative and quantitative agreement between the results of simulations
and experimental photographs demonstrated the numerical model to be well suited for simulating free-surface flows
over internal obstacles in general, and droplet spraying on tubes in particular.

Introduction

The impact of an individual liquid droplet against a
solid surface is an outcome of many spray applications.
Most studies, both experimental and numerical, have
considered the axisymmetric impact of a droplet against
a flat solid surface, which may be considered two-
dimensionally. Yet the solid surface geometry is often
more complicated. For example, Hardalupas et al. [2]
recently presented experimental results of the impact of
droplets onto solid spheres of similar curvature, with
application to the operation of fluidized beds. And
while this is a geometry that can still be considered
two-dimensionally, many others cannot. Yao et al. [3]
presented results of the impact of water droplets onto
the edge of heated thin steel strips, a geometry of
interest during the reflooding phase of a nuclear reactor
loss-of-coolant accident.

Of interest here is the impact of a droplet onto a
cylindrical tube, to demonstrate the efficacy of a
numerical technique presented previously [1]. Such a
geometry is common in applications such as
agricultural and medicinal sprays. Hung and Yao [4]
presented experimental results of such a geometry, and
characterized the phenomenon according to the relative
diameters of the tube and the droplet. In general terms,
as tube size increases, fluid adheres more easily to a
tube surface, and thus a larger tube tends to be more
disruptive of a periodic flow of droplets. The impact
and accumulation of fluid is complex, and depends not
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only on the geometry of impact, but on fluid properties
and the wettability of the solid surface.

The numerical method presented here is an
extension of a fixed-grid three-dimensional model
presented previously [1]. Earlier simulations, of the
impact of a droplet onto a flat incline and onto a sharp
edge, could be defined along gridlines. ~ Many
geometries, like a cylindrical tube, cannot be handled in
this way. The model has thus been extended to include
the definition of internal obstacles within the grid, to
accommodate such geometries. Results are presented
of the 1 m/s and 1.2 m/s impacts of a 2 mm diameter
water droplet onto tubes of two different diameters, and
the results compared with photographs taken of
corresponding impacts. The simulation results compare
well with experiment, and demonstrate that the
methodology is applicable to the simulation of such
complex phenomena.

Experimental Method

The experimental method is similar to that
previously described by Chandra and Avedisian [5] and
by Pasandideh-Fard et al. [6]. Single droplets are
formed by slowly pumping distilled water through a
hypodermic needle until the droplets detach under their
own weight. Droplet diameter is uniformly 2 mm. The
droplets fall onto a securely mounted horizontal
stainless steel tube (either 3.18 mm (0.125 in) or 6.35
mm (0.25 in) O.D.) polished with 600 grit emery paper.



The distance between the needle tip and the point of
impact is set to yield the 1 m/s and 1.2 m/s impact
velocities. A single 35 mm photograph is taken of any
one instant during an impact, as determined by a set
time delay between droplet release and the illumination
provided by a strobe of 8 ps duration. The photographs
of any particular instant from one droplet to the next are
sufficiently repeatable that a complete impact sequence
may be reconstructed from individual photographs of
different droplets.

Numerical Method

Fluid Flow. Fluid flow in an impacting droplet was
modeled using a finite difference solution of the
Navier-Stokes equations in a 3D Cartesian coordinate
system assuming laminar, incompressible flow. The
flow Reynolds number (assuming radial flow over a flat
plate in the droplet after impact) was estimated to be at
most 104, too small to induce turbulence. The surface
profile of the deforming droplet was defined using the
“fractional volume of fluid’’ scheme. In this method, a
scalar function f is defined as the fraction of a cell
volume occupied by fluid. f is assumed to be unity
when a cell is fully occupied by the fluid and zero for
an empty cell. Cells with values of 0<f<1 contain a free
surface. Surface tension is modeled as a volume force
acting on fluid near the free surface. Details of the fluid
flow model are given by Bussmann et al. [1,7].

Internal Obstacle. The tube in the computational
domain is an internal obstacle which affects the fluid
flow. We treat the internal obstacles as a special case of
two-phase flow, in which the first phase is the fluid,
with volume fraction ©, and the second phase is the
obstacle, with volume fraction (1-©). The obstacle is
characterized as a fluid of infinite density and zero
velocity. The volume fraction © is a scalar field whose
value is equal to one in the fluid and zero in the
obstacle. With this definition, ® is a perfect step
function only when obstacle boundaries coincide with
lines of the computational mesh. In general, however,
obstacle boundaries arbitrarily snake through the mesh,
cutting through cells. This gives rise to © values in the
range 0<O<1, which is necessary to avoid a ‘stair-step’
model of a curved interior obstacle boundary. Those
cells having a value of O satisfying 0<©<1 are termed
“partial flow cells” because a portion © of their finite
difference volume is open to flow and the remaining
portion (1-0©) is occupied by an obstacle closed to flow.
In the presence of internal obstacles, the finite
difference equations are modified by defining a volume
fraction © at the cell center, and area fractions G , Gy
and ©, at the cell faces in the x, y and z directions,
respectively. Based on this method, the final modified
continuity, momentum and VOF equations are [8,9]
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where V represents the velocity vector, p the pressure,
p the density, v the kinematic viscosity and F, any

body forces acting on the fluid.

Boundary Conditions for the Obstacle. Boundary
conditions which must be imposed on the surface of the
obstacle are velocity boundary conditions and contact
angle conditions at the contact line (the line at which
the solid, liquid and gas phases meet). Discretization of
boundary conditions is done as follows. No-slip
conditions are applied by defining "fictitious" velocities
within obstacle cells adjacent to fluid cells. These
conditions are only set for obstacle cells with a zero
value of ©. Velocities at the faces of these obstacle
cells are set such that normal and tangential velocities
at the liquid-obstacle interface become zero (no-slip
condition).

Contact angles must be properly set at all points on
the fluid contact line on the obstacle surface. The
contact angle here is defined as the angle between the
unit normal vector 7 directed into the liquid phase and

the unit normal 71, directed into the obstacle at every

point of the contact line. To evaluate 7 we use the
values of the volume fraction f according to the
following equation
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Detailed finite difference approximation of Eq. 4 is
given by Bussmann et al. [1]. For this scheme to work
when including obstacles we need to assign pseudo
volume fractions to obstacle cells adjacent to the liquid.
The approach used was to mirror values of f from fluid
cells into adjacent obstacle cells. Evaluation of 7 is
done similarly

A, = M (5)
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The unit normals 7 and 71, are evaluated at any vertex

of the obstacle cells adjacent to the contact line. The
angle between the two unit normals at every point on
the contact line can be obtained from

cos(x)=n-n, (6)

Since the fluid-obstacle interface is a spatial surface,
the direction of unit normals 7 and ﬁ“, varies with



location on the contact line. As a result, the angle « is a
spatial angle that varies at every point on the contact
line. Proper setting of contact angles at the contact line
requires that the unit normal 7 at every point of the
contact line is redirected such that the angle between 7
and A, is set to the dynamic contact angle 6, instead of

the angle ¢. If /i, is the redirected unit normal into the
liquid phase we will have
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Finally, the evaluation of 7, from the above equation

requires a known value of the dynamic contact angle at
every point of the contact line. A simple model,
introduced by Bussmann el al. [1], is used to evaluate
contact angle as a function of contact line velocity. The
model requires values of only two contact angles, at a
rapidly advancing and a rapidly receding contact line.
For the cases under consideration in this study, water
droplets on tubes, we used the values suggested by
Bussmann el al. [1] for the impact of a water droplet on
an incline: 110° and 40° at the advancing and receding
contact lines, respectively.

The modified Navier-Stokes equations were solved
on an Eulerian, rectangular, staggered mesh in a 3D
Cartesian  coordinate system. The droplet was
discretized with a grid spacing equal to 1/15 of the
droplet radius. Numerical computations were performed
on a Sun Ultra Enterprise 450 workstation. A typical
CPU time was three days.

Results

We present the results for the impact of a 2 mm
water droplet with a velocity of 1 m/s and 1.2 m/s on
two different tube sizes, 3.18 mm and 6.35 mm O.D.,
respectively. The point of impact of the droplet was
offset from the tube center in both cases when viewed
along the axis of the tube.

Figure 1 shows images, generated by the numerical
model, and corresponding photographs of successive
stages of droplet impact on a tube with an outside
diameter of 3.18 mm. The impact velocity was 1 m/s.
Times shown were measured from the moment of
impact. The droplet impacted the tube on one side, the
center of the droplet offset 1.55 mm from the center of
the tube along the direction normal to the impact (Fig. 1
at 0.0 ms). Right after the impact, the droplet spread on
the surface of the tube and moved down on the side of
the impact as shown after 0.4 ms in Fig. 1. The
downward fluid motion on this side continued to the
end of the process. The droplet spreading on the other
side of the tube, however, stopped after 0.4 ms. As the
droplet was moving down it spread and recoiled along

the tube axis as shown in a video animation of the
numerical results viewed from an angle [10]. Close
inspection of the numerical results [10] showed that the
droplet spread to its maximum extent along the tube
axis until 2.5 ms after the impact. After this time, the
droplet was recoiling along the tube axis; the recoil is
seen in Fig. 1 after 4.6 ms in both simulations and
photographs. As a result of the downward flow, after 4
ms, the bulk of the droplet was not in contact with the
tube surface. This resulted in a column of liquid being
suspended from the tube. The tip of this column began
to neck off, forming a droplet that detached 11.0 ms
after initial impact. A second smaller droplet also
formed from the fluid tail at the bottom of the tube; this
droplet pinched off at 12 ms from the impact (see Fig.
1). The model captured the formation and detachment
of both droplets at the exact times as observed
experimentally (see Fig. 1). The rest of the fluid tail
withdrew to the bottom surface of the tube. The
remaining fluid on the tube moved slowly to the bottom
of the tube as shown from both numerical results and
photographs. The good qualitative and quantitative
agreement between the simulation results and
experimental photographs ~demonstrated that the
numerical model is well suited for simulating free-
surface flows with internal obstacles in general, and
droplet spraying on tubes in particular.

The results of the simulation model and
experimental photographs for the second case, droplet
impact on a 6.35 mm tube size, are shown in Fig. 2. The
impact velocity in this case was 1.2 m/s. Similar to the
previous case, the droplet impacted the tube with an
offset of 1.85 mm from the center of the tube along the
direction normal to the impact (Fig. 2 in 0.0 ms). The
droplet was moving down on the side of the impact as
soon as 0.4 ms from the impact. The droplet spreading
in the other side of the tube, however, stopped after 0.8
ms from the impact. Compared to the previous case,
there was more fluid contact with the tube surface
(because of a bigger size tube). More kinetic energy
was, therefore, lost due to the viscous dissipation. As a
result, downward fluid motion was arrested by surface
tension forces within 6 ms after impact. Compared to
the impact on the smaller tube, although the impact
velocity was higher in this case, there was no droplet
pinch off. A video animation of the numerical results
viewed from an angle [11] showed the maximum
spread along the tube axis after 3 ms from the impact.
The droplet recoiled after this time; the droplet recoil is
seen in Fig. 2 in images corresponding to 6 ms and 8
ms after impact. A good qualitative agreement between
the results of simulation and experiments was found in
this case. The simulation model, however, predicted
less downward fluid movement as seen in Fig. 2.
Surface tension and interfacial forces become dominant
towards the end of droplet spread, and eventually arrest



the downward flow of the droplet. It is likely that errors
in our estimate of the dynamic liquid-solid contact
angle, which varies with both time and location around
the droplet periphery, are responsible for the observed
discrepancies between the simulations and experiments.

Conclusions

A 3D computational model of free-surface flows
including internal obstacles was developed. The model
was an extension of the Bussmann et al. model [1]. The
model was used to simulate the impact of a water
droplet on a stainless steel tube. The results of the
model were compared with experimental photographs
for the impact of a 2 mm water droplet on two tube
sizes: 3.18 mm and 6.35 mm O.D.; the impact velocity
was 1 m/s and 1.2 m/s on the two tubes, respectively.
The droplet impacting on the smaller tube size pinched
off the tube surface. On the bigger tube size, however,
surface tension effects arrested droplet downward flow
on the tube surface; as a result, there was no droplet
pinch off in this case. The good qualitative and
quantitative agreement between the results of
simulations and experimental photographs
demonstrated the numerical model to be well suited for
simulating free-surface flows over internal obstacles in
general, and droplet spraying on tubes in particular.
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10.Video animation of simulation results (viewed
from an angle) for the impact of a 2 mm water
droplet on a 3.18 mm (0.125 in) O.D. tube, to be
presented with this paper.

11.Video animation of simulation results (viewed from
an angle) for the impact of a 2 mm water droplet on
a 6.35 mm (0.25 in) O.D. tube, to be presented with
this paper.
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Figure 1. Side-view images of the impact of a 2 mm dia water droplet at 1 m/s onto a stainless steel tube with an
outside dia of 3.18 mm (0.125 in); the droplet center offset 1.55 mm from the tube center. Photographs at
left, corresponding simulation results at right. Times measured from the moment of impact.
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Figure 1. Continued.
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Figure 2. Side-view images of the impact of a 2 mm dia water droplet at 1.2 m/s onto a stainless steel tube with an
outside dia of 6.35 mm (0.25 in); the droplet center offset 1.85 mm from the tube center. Photographs at
left, corresponding simulation results at right. Times measured from the moment of impact.
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