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ABSTRACT

Most previous modelling of the planar flow casting
process has specified a melt inflow rate into the gap be-
tween nozzle and wheel, rather than the actual bound-
ary condition which is an applied overpressure in-
side the crucible. The resulting simplification typi-
cally leads to predictions of the formation of steady
so-called puddles, where experimental results clearly
point to a limited window of operability outside of
which a stable puddle will not form. In this paper, we
present details of a two-dimensional model of the flow,
heat transfer, and phase change of the planar flow cast-
ing process, with applied pressure as the inlet bound-
ary condition. The results of various simulations are
then presented, that demonstrate a limited range of
overpressures for a given wheel speed within which
a stable puddle can be formed. On the other hand, for
a given overpressure, simulations corresponding to a
very wide range of wheel speed all predict stable pud-
dles. A reason for this may be that the high wheel
speed instability is a three-dimensional one, that acts
across the puddle and ribbon, and so cannot be pre-
dicted by a two-dimensional model.

1 INTRODUCTION

Planar flow casting, also referred to asmelt spinning, is
a rapid solidification process often utilized to produce
amorphous metallic ribbon or foil. Although widely
used to produce small quantities of material for re-
search purposes, the technique has seen little commer-
cial application, for reasons related to the difficulty in
scaling up the process, and in realizing stable opera-
tion.

The process is illustrated in Figure 1. A crucible con-
tains molten material, and is positioned just above a
rotating chill wheel. Upon application of an overpres-
sure inside the crucible, molten material is ejected into

Figure 1: Schematic of a melt spinner (not to scale).

the very thin gap between the underside of the nozzle
and the top of the wheel. For some part of the operat-
ing space of the process (defined by three parameters:
the overpressure∆p, the gap heightG, and the wheel
speedU), a so-calledpuddle, illustrated in Figure 2,
will stabilize between the nozzle and wheel, with the
inflow of melt balanced by the rate at which solidified
ribbon is removed from the bottom of the puddle.

In a review paper by Steen and Karcher [3], the au-
thors present an operability window (reproduced in
Figure 3) as a function of two parameters driving the
process: the overpressure and the wheel inertia, each
non-dimensionalized by the surface tension of the melt
that is responsible for containing the puddle within
the gap. In this paper, we present the results of a
two-dimensional model of the planar flow casting pro-
cess, based on one developed previously [2], to ex-
amine this operability window numerically. Various



Figure 2: Close-up of a melt spinning puddle.

Figure 3: The operability window of Steen and
Karcher [3].

improvements have been made to the previous model,
but for the purposes of this paper, the significant dif-
ference is the boundary condition at the inlet to the
puddle. Rather than a specified inflow rate, which is
the boundary condition also applied in most previous
modelling work, the results here are for a specified
overpressure. The difference is significant: simula-
tions for various specified inflow rates always yielded
stable puddles [2]. On the other hand, as we will show
in this paper, stable puddles formed only for a limited
range of overpressures for a given wheel speed; above
and below the range, simulations would not converge
to a steady solution, with fluid configurations nowhere
near what one would expect for stable operation.

2 METHODOLOGY

We present a brief overview of the model, similar to
one developed previously and described in more detail
in [2].

Our model of the planar flow casting process is based
on the following assumptions: (i) a two-dimensional
planar configuration, as the ribbon width and the wheel
diameter are much greater than the gap height; (ii) in-
compressible, laminar, and Newtonian flow; (iii) the
ribbon cools rapidly, so that solidification is to an
amorphous (glassy) microstructure; (iv) the melt cools
only to the wheel, and is characterized by a single

value of a heat transfer coefficienth; (v) melt densityρ,
surface tensionσ, and thermal diffusivityα are char-
acterized by constant values; dynamic viscosityµ is
presumed to vary with temperature; and (vi) the pro-
cess occurs within a vacuum, so that shear stresses at
the free surface are zero, and the only flow is within
the melt.

Equations governing flow and heat transfer from
within the nozzle and gap are the equations of con-
servation of mass, momentum, and energy:

∇ ·u = 0 (1)

∂u
∂t

+∇ · (uu) =−1
ρ

∇p+
1
ρ

∇ · τ̃+
1
ρ

FST (2)

∂T
∂t

+∇ · (uT) = α∇2T (3)

whereu is velocity, p is pressure,T is temperature,
τ̃ is the shear stress tensor, andFST is the surface ten-
sion force acting at the melt free surface, modelled as a
body force according to the Continuum Surface Force
approach of Brackbill et al. [1]. Note that we make
no distinction between liquid and solid phases as the
melt is assumed to solidify to an amorphous solid, and
so releases no latent heat; thus, the flow equations are
solved throughout the melt/solid. The flow “sees” the
solidification via the temperature-dependent viscosity,
which increases by several orders of magnitude as the
melt cools.

The equations are discretized according to typical fi-
nite volume conventions on a rectilinear grid that en-
compasses the gap and 1 mm of the nozzle above
the gap, and extends several millimetres both up and
downstream of the exit of the nozzle, as illustrated in
Figure 4. Velocities are defined normal to cell faces;
scalar quantities including pressure and temperature
are defined at cell centres.

The time discretization of equation 2 is via a two-
step projection method: an interim velocity is calcu-
lated from the convective, viscous, and surface tension
forces acting on the fluid during a timestep∆t. The
convective and surface tension contributions are cal-
culated explicity, while the viscous term is treated im-
plicitly. The interim velocity is then projected onto a
divergence-free velocity field, which leads to an im-
plicit Poisson equation for pressure. Finally, equa-
tion 3 is solved explicitly at each timestep following
the pressure solve.

The free surface is represented via a volume-of-fluid
approach: a scalar functionf has a value of 1 within
the fluid, and otherwise 0, and satisfies the advection



Figure 4: A sample mesh, that extends across the gap
and 1 mm into the nozzle.

equation:
∂ f
∂t

+∇ · (u f) = 0 (4)

In discretized form, the value off corresponds to the
volume fraction of cells filled with fluid, and so varies
from zero to one, with the free surface located in cells
with 0 < f < 1. Equation 4 is discretized according
to the method of Youngs [4], by reconstructing the in-
terface at each timestep in a piecewise-linear manner,
and then calculating flux volumes geometrically.

Initially, the simulation begins with fluid only in the
top row of cells in the domain. A no-slip condition is
imposed along the nozzle and wheel, with the wheel
moving from left to right at the velocityU . There is
no boundary condition at the upstream (left) side of
the gap, as we halt simulations when fluid reaches this
boundary. The downstream (right) edge of the domain
is a simple outflow boundary, placed far enough down-
stream that ribbon usually has cooled sufficiently to be
considered solid, and thus is moving at the wheel ve-
locity.

Pressure is set to zero in any cells withf = 0, ie. in
the vacuum surrounding the melt. At the top of the
domain we prescribe an overpressure∆p rather than a
specified inflow rate, as was done previously [2], and
couple that to a zero gradient condition on velocity
normal to the inlet. Note that we are not modelling
the entire slot nozzle, which extends upward far more
than 1 mm from the underside of the nozzle, but rather
just the bottom part of it, and so presume that a fully
developed profile exists at that point.

At the beginning of a simulation, as fluid first begins
to enter the nozzle above the gap, it is the difference
between the applied overpressure at the top of the do-
main and the zero pressure in the vacuum that drives
flow; the velocity and volume fraction profiles are first
uniform across the nozzle, but these quickly change to
a rounded profile as the no-slip condition at the noz-
zle walls is imposed. By the time the fluid has filled
the nozzle and is beginning to enter the gap, the veloc-
ity profile across the nozzle is nearly parabolic, with a
small linear pressure gradient to offset viscous shear.

Finally, the surface tension calculation requires the

specification of a contact angleθ at every triple point,
as illustrated in Figure 2; these include the two points
on the underside of the nozzle, where the up and down-
stream menisci meet the nozzle, and the point at which
the upstream meniscus meets the wheel. The latter
value matters little to the simulation, because at the
wheel inertial and viscous forces dominate. But on the
underside of the nozzle, the value will affect the posi-
tion of the meniscus.

3 RESULTS

We begin by presenting results of a simulation that
leads to the formation of a steady puddle. The same
simulation was run on three different meshes and the
results used to assess mesh-independence; the results
presented here correspond to a mesh size of 225×90
in the horizontal and vertical directions, respectively.
The cells are uniformly distributed in the horizontal
direction; in the vertical direction, the mesh is most
refined at the bottom of the domain (at the wheel sur-
face), and then gradually coarsens through the gap and
into the nozzle.

All of the results in this paper are for material prop-
erties corresponding to molten Ni:ρ = 7870 kg/m3,
σ = 1.7 N/m,α = 2.6×10−5 m2/s, thermal conductiv-
ity k = 90 W/mK (required to impose the heat transfer
boundary condition at the wheel surface), and the fol-
lowing melt viscosity variation with temperature:

µ= 1.66×10−4exp
2180

T−722
Pa· s (5)

whereT is specified in Kelvin.

The operating parameters for the first set of results are
the following: gap heightG = 0.375 mm, nozzle slot
breadthB= 0.5 mm, wheel speedU = 26 m/s, the heat
transfer coefficient at the wheelh = 1×106 W/m2K,
and an overpressure∆p = 10 kPa.

A contact angleθ = 130◦ was specified along the in-
side and underside of the nozzle, which is different
than the 170◦ used previously [2]. We know from ex-
periment that the melt is very non-wetting, but won-
der whether the value may not be as high as we pre-
viously thought. A contact angle ofθ = 90◦ was im-
posed along the wheel; we have no experimental basis
for choosing this value, but do know that it matters lit-
tle to the results.

Figure 5 illustrates the formation of a steady puddle.
By 0.5 ms, the melt has filled most of the nozzle above
the gap, and the profile at the front is rounded, reflect-
ing both the no-slip condition and the non-wetting con-
tact angle applied at the nozzle walls. At 1 ms, the



puddle has already begun to take shape: a rounded
upstream meniscus, and a downstream meniscus that
extends from the nozzle down to solid ribbon being
pulled from beneath the puddle. Another ms later,
the puddle has filled out: the upstream meniscus has
moved upstream of the nozzle slot, while the down-
stream meniscus, although still pinned at the slot, has
grown considerably longer. And as the last of the pro-
files of Figure 5 illustrates, the puddle at 2 ms is very
near steady state, as the puddle at 10 ms looks very
similar.

The steady state position of the menisci in Figure
5: upstream of the nozzle slot and pinned at the
downstream end, is similiar to results obtained previ-
ously [2] for specified melt inflow rates. Yet the down-
stream position is peculiar, as the little experimental
evidence that exists suggests that both menisci move
away from the nozzle, up and downstream. That was
the rationale for lowering the contact angle from 170◦

to 130◦, yet that change influences the position of the
upstream meniscus much more than the downstream.
It isn’t clear at this point what would consistently lead
to a downstream meniscus that is not pinned at the noz-
zle slot.

Figures 6 and 7 illustrate the variation of pressure ver-
tically through the center of the nozzle and along the
base of the puddle, respectively, for the steady puddle
of Figure 5. Figure 6 illustrates the small pressure gra-
dient required to drive fluid through the nozzle, and
then the very large jump in pressure that occurs in the
puddle, in reaction to the wheel pulling fluid from left
to right. Along the wheel, in the vicinity of the nozzle,
one sees the same jump in pressure, with a maximum
just to the right of the nozzle centerline.

Figures 8 and 9 present results for overpressures lower
and higher than the 10 kPa value that leads to a steady
puddle, and the results change dramatically from the
steady state. For too small an overpressure,∆p = 5
kPa, the fluid within the gap never settles down to any-
thing that resembles a steady puddle. Off and on, fluid
does push upstream, and as evidenced by the profile
at 8 ms, at times there is much fluid downstream. In
the third of the contours, at 12 ms, one can see a large
chunk of fluid exiting the domain at the right. Suffice
to say that the entire simulation was characterized by
incomplete wetting on the underside of the nozzle, and
irregular upstream meniscus shapes. We ran the same
simulation on other meshes and obtained similar over-
all behaviour, although the specifics varied consider-
ably. We also ran the simulation presented in Figure 8
well past 10 ms, but the fluid configuration continued
to change abruptly at various times.

 45

will show that the downstream meniscus will move forward when the nozzle/wheel gap 

is further reduced. 

 Referring to Figure 3.6, at 0.1 ms the 10 kPa overpressure begins to push melt 

into the nozzle, and it reaches the exit of the nozzle at about 0.5 ms. By 0.8 ms the jet 

has touched the wheel and some of the metal is already being pulled downstream. At 1 

ms the upstream meniscus is moving upstream, and the ribbon is being formed 

downstream. By 2 ms, the upstream meniscus has wet the nozzle lip, and the 

downstream meniscus is bulging as the ribbon thickness increases. 
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Figure 3.6: Evolution of puddle shape - reference simulation (continued) 
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Figure 3.6: Evolution of puddle shape - reference simulation (continued) 

 

 

 46

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 2.0 ms

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 1.0 ms

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 4.0 ms

 

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 6.0 ms

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 10.0 ms

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 15.0 ms

 

Figure 3.6: Evolution of puddle shape - reference simulation  

 46

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 2.0 ms

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 1.0 ms

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 4.0 ms

 

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 6.0 ms

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 10.0 ms

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 15.0 ms

 

Figure 3.6: Evolution of puddle shape - reference simulation  

 46

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 2.0 ms

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 1.0 ms

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 4.0 ms

 

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 6.0 ms

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 10.0 ms

x

y

1 2 3 4 5 60

0.5

1

1.5
t = 15.0 ms

 

Figure 3.6: Evolution of puddle shape - reference simulation  

Figure 5: Free surface contours leading to the develop-
ment of a stable puddle at the reference overpressure
∆p = 10 kPa. 49
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Figure 3.9: Puddle base pressure (left) and nozzle centerline pressure (right) 

  

 Finally, steady state pressure along the base of the puddle and pressure along 

the centerline of the nozzle are plotted in Figure 3.9. The nozzle centerline pressure 

shows that there is a small linear pressure gradient inside the nozzle, but that the 

nozzle pressure rises sharply after exiting the nozzle and reaches a maximum value at 

the base of the wheel. Along the wheel, the same pressure jump beneath the nozzle is 

shown, although the highest value of the jump is slightly downstream of the centerline, 

probably because fluid is being pulled by the wheel towards the right of the domain.  

 

 

 

 

 

 

 

 

 

Figure 6: Pressure vertically through the center of the
nozzle, for the puddle illustrated in Figure 5. 49

Pressure [kPa]

C
e

n
t

e
r

l
i

n
e

H
e

i
g

h
t

[
m

m
]

0 20 40 60 800

0.2

0.4

0.6

0.8

1

1.2

1.4

Puddle base length [mm]

P
r

e
s

s
u

r
e

[
k

P
a

]

2 2.25 2.5 2.75 3
0

10

20

30

40

50

60

70

80
Nozzle

 

Figure 3.9: Puddle base pressure (left) and nozzle centerline pressure (right) 

  

 Finally, steady state pressure along the base of the puddle and pressure along 

the centerline of the nozzle are plotted in Figure 3.9. The nozzle centerline pressure 

shows that there is a small linear pressure gradient inside the nozzle, but that the 

nozzle pressure rises sharply after exiting the nozzle and reaches a maximum value at 

the base of the wheel. Along the wheel, the same pressure jump beneath the nozzle is 

shown, although the highest value of the jump is slightly downstream of the centerline, 

probably because fluid is being pulled by the wheel towards the right of the domain.  

 

 

 

 

 

 

 

 

 

Figure 7: Pressure along the bottom of the puddle, for
the puddle illustrated in Figure 5.
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Figure 4.1: Evolution of the puddle for 5 kPa overpressure 
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Figure 4.1: Evolution of the puddle for 5 kPa overpressure 
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Figure 4.1: Evolution of the puddle for 5 kPa overpressure 
Figure 8: Puddle contours at 4, 8, and 10 ms, for∆p =
5 kPa.
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Figure 4.2: Evolution of the puddle for 15 kPa overpressure 
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Figure 4.2: Evolution of the puddle for 15 kPa overpressure 
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Figure 4.2: Evolution of the puddle for 15 kPa overpressure 
Figure 9: Puddle contours at 5, 10, and 20 ms, for∆p
= 15 kPa.

At too high a pressure (Figure 9), the result is smoother
than for too low a pressure, but the puddle fails to reach
steady state for a very different reason. In this case, as
is also pictured in the cartoon at the right of the oper-
ability window (Figure 3), the pressure is simply too
high, and so forces fluid all the way to the upstream
end of the nozzle. In our case, we defined the end of
the computational domain at that point, and stopped
the simulation when fluid reached the left edge. Also,
at 20 ms, note that waves have appeared on the down-
stream meniscus, that originate from the nozzle slot
and travel towards the right. The reason for the waves,
whether physical or numerical, is not known.

Figure 10 presents inflow rates versus time for the
three simulations. At∆p = 10 kPa, the rate is steady
within a couple of ms of the beginning of the process.
At 15 kPa, the inflow rate steadily increases with time,
as the upstream meniscus moves left. And at 5 kPa, in-
flow rate fluctuates dramatically, and never reaches any
semblance of steady state. Figure 11 presents a similar
picture, but from the outflow end of the domain. Rib-
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Figure 4.3: Inflow and ribbon thickness for different overpressures 

 

 Figure 4.4 shows the puddle base pressure and nozzle centerline pressure for 5 

and 15 kPa compared with the reference overpressure of 10 kPa. The vertical 

centerline pressure distribution is very interesting. A very small change in pressure 

down the nozzle is observed at 10 and 15 kPa, until near the nozzle exit. But a 

dramatic change of pressure inside the puddle is observed: a 15 kPa overpressure 

results in a maximum pressure along the wheel that is more than twice the maximum 

pressure at 10 kPa. And in both cases, the maximum pressure along the wheel is 

slightly downstream of the nozzle centerline. A very different puddle base pressure and 

centerline pressure can be observed for the case of 5 kPa overpressure (plotted from 

the unstable results at 10 ms). Pressure along the nozzle in this case is negative, and 

Figure 10: Inflow rate as a function of time, for the
three different values of∆p.
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dramatic change of pressure inside the puddle is observed: a 15 kPa overpressure 

results in a maximum pressure along the wheel that is more than twice the maximum 

pressure at 10 kPa. And in both cases, the maximum pressure along the wheel is 

slightly downstream of the nozzle centerline. A very different puddle base pressure and 

centerline pressure can be observed for the case of 5 kPa overpressure (plotted from 

the unstable results at 10 ms). Pressure along the nozzle in this case is negative, and 

Figure 11: Ribbon thickness leaving the domain, as a
function of time, for the three different values of∆p.

bon thicknessH is plotted versus time, and again, the
results for∆p = 10 kPa are steady within a couple of
ms (note that at steady state, inflow rate and outflow
rateH ∗U are equal), at 15 kPa, the ribbon thickness
grows with time, and at 5 kPa, there is no evidence of
steady behaviour.

To conclude, the results of the effect of varying the
overpressure are in qualitative agreement with the op-
erability window of Figure 3, and are results that
were not obtained when specifying a fixed melt inflow
rate [2].

We also ran a series of simulations with an overpres-
sure∆p = 10 kPa, varying the wheel speed about the
reference value of 26 m/s, in order to investigate op-
erability behaviour along the vertical axis of Figure 3.
Unlike the results already shown, we saw no sign of
instability, but rather obtained a steady state solution
for eachU , as illustrated in Figure 12. In this case, the
position of the upstream meniscus varies little over a
wide range of wheel speeds; the significant differences
are in the shape of the puddle downstream of the noz-
zle. Note too that ribbon thickness increases dramati-
cally as the wheel speed decreases, and that in some
cases, the ribbons are very thick, and for these the
outflow boundary may not be positioned far enough
downstream. Nevertheless, for each wheelspeed we
obtained steady results, and the reason is not clear.
One possible explanation is that the instability at high
wheel speeds, illustrated in Figure 3 affects the depth
of the puddle and ribbon, the dimension that we are not
modelling with our two-dimensional approximation.
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4.3. Varying the wheel speed 

 A third parameter in the PFC process that can be adjusted by an operator is the 

wheel speed. Here, wheel speed was varied from 6.5 to 78 m/s, and interestingly and 

unexpectedly, stable and steady solutions were found for all velocities.  This result is 

surprising, because Steen and Carpenter [21] proposed that a high velocity limit exists, 

after which atomization occurs, instead of a continuous ribbon. The fact that this 

model yields a wide range of stability in terms of wheel velocity would appear to 

imply that this particular instability mechanism is not available to this model. 

Figure 4.11 shows puddle shapes at steady state for different wheel speeds. It 

was found that the puddle is shorter at higher wheel speed, and that long puddles are 

generated at low wheel speed. The upstream meniscus position changes only slightly 

with wheel speed, and it moves further upstream as the wheel speed decreases. The 

downstream meniscus was pinned at the nozzle slot for the faster wheel speeds, but a 

little wetting occurs with a wheel velocity of 6.5 m/s. A dramatic difference is 

observed in the slope of the downstream meniscus: the slope became shallower, and 

the downstream puddle becomes longer, as the speed decreases.  
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Figure 4.11: Puddle shapes for different wheel speeds 

 
Figure 12: Steady puddle contours at five different
wheel speeds, for∆p = 10 kPa.

4 CONCLUSIONS

Unlike the results of most previous models of the pla-
nar flow casting process, this paper presents results for
specified overpressure in the crucible. The change in
boundary condition leads to quite different behaviour
of the puddle formation process. In particular, the
model demonstrates unstable puddles both for over-
pressures that are too small and too large. On the other
hand, a series of simulations that examined the effect
of varying the wheel speed at a given overpressure all
led to stable puddles with no sign of instability, a re-
sult that may suggest that the instability at high wheel
speeds occurs across the depth of the puddle, and so
cannot be predicted with a two-dimensional code.
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