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ABSTRACT

A time accurate numerical study was carried out to
study the quasi-steady behavior of under-expanded
jets. The quasi-steadiness is caused by interaction of
the large scale instabilities with the shock cell struc-
ture of the under-expanded jet. A time marching
TVD scheme along with a corrected k− ε turbulence
model, which accounts for compressibility and tur-
bulence/shock wave interaction, was used for simula-
tions. Then, linear instability theory was applied to the
same jet to explain and support the numerical calcula-
tions. It was shown that the time dependent fluctua-
tions in flow parameters were maximum in the vicinity
of shock waves. In addition, two types of instability
waves, corresponding to two distinct frequency ranges,
were found to exist and interact with the flow structure.

1 BACKGROUND AND INTRODUCTION

The fouling of heat transfer surfaces in kraft recovery
boilers is a significant concern for the pulp and paper
industry. The usual approach to controlling fouling is
the use of so-called “sootblowers,” that utilize boiler
steam to generate supersonic steam jets that are lit-
erally used to knock deposits off of the boiler tubes.
Sootblower nozzles are nominally designed such that
the steam is expanded to ambient pressure at the noz-
zle exit. But in reality, sootblower jets never perform
at exactly the design condition, and so the jet pressure
at the nozzle exit is never exactly the ambient pressure
inside the boiler.

When the nozzle exit pressure of a supersonic jet is
higher than the ambient pressure, shock and expansion
waves form, the so-called multi-cell shock structure,
through which the pressure of the flow field drops to
the ambient value. These jets are usually referred to

Figure 1: Flow visualization of an under-expanded jet
by Panda [1]; the nozzle exit is on the left hand side.

as ”under-expanded”. Figure 1 shows a Schlieren flow
visualization of an under-expanded jet [1]. As can be
seen, the shock cell structure consists of oblique shock
waves, and it decays with distance from the nozzle exit
due to the interaction with turbulence.

The interaction of large scale flow instabilities with
shock and expansion waves is one of the important
physical phenomena of under-expanded jets. This in-
teraction leads to time-dependent oscillating (quasi-
steady) behavior of the flow field. This physical phe-
nomenon is known and has been observed experimen-
tally (e.g. Refs. [1, 2]). Although simulation of under-
expanded jets is challenging, given the complicated in-
teraction of shock waves and turbulent mixing, quasi-
steady behavior of these flows seems to be captured
well by the present simulations.

Here, time accurate simulations are used to study the
quasi-unsteadiness of the under-expanded jet of Seiner
and Norum [3], with an exit to ambient pressure ra-
tio of 1.45 and an exit Mach number of 2.0, both in
the time and frequency domains. The measurements
of Seiner and Norum are frequently cited and used to
assess numerical models (other measurements by No-
rum and Seiner [15], for a similar under-expanded jet,
confirm the validity of this data). Then, linear jet in-



stability theory [4] is applied to the same jet, and the
results are used to explain and support the numerical
study. All of the simulations were 2-D axisymmetric,
and so the azimuthal instability modes were not cap-
tured; given the fine meshes required to capture the
shock wave phenomena, 3-D simulations were not at-
tempted.

2 EXISTENCE OF INSTABILITY WAVES

The linear instability theory of Tam and Hu [4] for a
round compressible jet is used to explain some of the
numerical results of the present study. This theory is
based on a solution of the linearized Euler equations.
The linear solution to an axisymmetric jet yields rela-
tions for pressure perturbations inside and outside the
jet, respectively, as

pi = [H(1)
0 (iηoD/2)J0(ηir)/J0(ηiD/2)]exp[i(αx−ωt)]

(1)
and

po = H(1)
0 (iηor)exp[i(αx−ωt)] (2)

where H(1)
0 is the zeroth-order Hankel function of the

first kind, J0 is the zeroth-order Bessel function of the
first kind, D is the nozzle exit diameter, α is the wave
number, ω is frequency, and x, r and t are the axial and
radial coordinates and time, respectively. Also, ηo =
(α2 − ω2/a2

∞)1/2 and ηi = [(ω −Ueα)2/a2
e − α2]1/2,

where a∞ is the ambient speed of sound, and ae and
Ue are the speed of sound and the flow velocity at the
nozzle exit, respectively. Setting the inside and outside
solutions equal to each other at the jet boundary, one
obtains

DS(ω,α) ≡
iηo

ρ∞ω2 J0(ηiD/2)H(1)′
0 (iηoD/2)−

ηi

ρe(ω−Ueα)2 H(1)
0 (iηoD/2)J′0(ηiD/2) = 0 (3)

where DS(ω,α) is usually referred to as the dispersion
function. Solutions of DS yield the possible frequen-
cies, ω, for a given wave number, α. These are referred
to as instability modes.

This instability theory was applied to the jet stud-
ied here, and the solutions of the dispersion function
were plotted in the ω plane, as can be seen in Fig-
ure 2, where ωr and ωi represent the real and imagi-
nary parts of ω respectively, and αD = 30. The blue
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Figure 2: Solutions of the dispersion function,
DS(ω,α), in the ω plane, for αD = 30. Filled boxes
and circles represent the Kelvin-Helmholtz and acous-
tic instability modes, respectively.

and red lines represent the zeros of the real and imagi-
nary parts of DS, respectively; the intersections are the
solutions of DS, i.e. the instability modes. By looking
at the pressure eigenfunctions, Tam and Hu [4] argued
that these instability modes correspond to two different
categories: the Kelvin-Helmholtz and acoustic waves,
represented by filled boxes and circles, respectively.
Carrying out the calculations for different values of
α, including complex values, yielded similar results.
These confirm the existence of instability modes in the
jet flow and will prove useful, when the simulation re-
sults are studied in the frequency domain.

3 NUMERICAL METHOD

CFDLib 3.02, a Computational Fluid Dynamics code
developed at the Los Alamos National Laboratory, was
used for calculations. To calculate the motion of a
compressible flow, the Favre averaged equations of
conservation of mass, momentum and energy must be
solved,

ρ̄ ˙̄v =
∂ũi

∂xi
(4)

ρ̄ ˙̃ui = −
∂p̄
∂xi

+
∂t̄i j

∂x j
+

∂λi j

∂x j
(5)

ρ̄ ˙̃E = −
∂p̄ũ j

∂x j
+

∂ũit̄i j

∂x j
+ ũi

∂λi j

∂x j
−



∂qL j +qT j

∂x j
+ ρ̄ε (6)

along with an equation of state p̄ = ρ̄RT̃ , where ρ is
density, v is specific volume, ui is the velocity vector, xi
is the coordinate vector, p is pressure, ti j is the molec-
ular stress tensor, λi j is the Reynolds stress tensor, E is
specific total energy, qL j and qT j are the laminar and
turbulent heat flux vectors, respectively, ε is the turbu-
lence dissipation rate, T is temperature, and ’ ¯ ’, ’ ˜ ’
and ’ ˙ ’ represent the Reynolds average, Favre average
and Lagrangian derivative, respectively.

The turbulence model is the standard k − ε model,
with modifications applied to account for the effects
of structural compressibility [5], realizability [6], and
shock unsteadiness [7]. The turbulence kinetic energy
k and dissipation ε equations are [8]

ρ̄k̇ = λi j
∂ũi

∂x j
− ρ̄ε+

∂
∂x j

[(µ+
µT

σk
)

∂k
∂x j

] (7)

ρ̄ε̇ = Cε1
ε
k

λi j
∂ũi

∂x j
−Cε2ρ̄

ε2

k
+

∂
∂x j

[(µ+
µT

σε
)

∂ε
∂x j

] (8)

where Cε1 (=1.44), Cε2 (=1.92), σk (=1.0) and σε
(=1.3) are constant closure coefficients, and from the
dynamic eddy viscosity µT = Cµρ̄ k2

ε , Cµ is an addi-
tional coefficient.

To account for the structural compressibility, Heinz [5]
suggested that

Cµ = 0.07exp(−0.4Mg) (9)

where Mg (= Sglg
a ) is the gradient Mach number, and

characterizes the strength of compressibility [9]; Sg =
∂U1
∂x2

is the mean shear rate, U1 and x2 are the stream-
wise mean velocity and the shear direction coordinate,
respectively, lg is the correlation length of the stream-
wise fluctuating velocities in the shear direction, and a
is the local sound speed. Tandra et al. [10] suggested
that lg be calculated as lg = CD

k3/2

ε , where CD is a clo-
sure coefficient usually considered to be 0.09.

To ensure the positivity of the turbulence kinetic en-
ergy in the vicinity of shock waves, Thivet et al. [6]
suggested a realizability condition on the eddy viscos-
ity,

µT = ρ̄min(Cµ
k2

ε
,
√

Cµ
k

SThivet
) (10)

where SThivet is defined as

SThivet =

√

2(Si jS ji −
1
3

S2
kk) (11)

where S ji is the strain tensor.

Finally, to account for shock unsteadiness effects, un-
steady motion of the shock wave front caused by the
turbulence scale fluctuations, Sinha et al. [7] proposed
that the turbulence production term, Pk, be calculated
as

Pk = c
′

µµT (2Si jS ji −
2
3

S2
kk)−

2
3

ρ̄kSkk (12)

where

c
′

µ = 1− fs[1+
1
√

3
b
′

1ε
kST hivetCµ

] (13)

and

fs =
1
2
−

1
2

tanh(5
Skk

SThivet
+3) (14)

and SThivet is defined by Equation 11. Equation 14 de-
fines fs such that fs is close to 1 in highly compressed
regions and close to 0 otherwise.

The original version of CFDLib included an imple-
mentation of the standard k − ε model. The com-
pressibility modifications were implemented by Tan-
dra [11], while the other two were implemented by
Emami et al. [12].

The numerical scheme implemented in CFDLib is a fi-
nite volume, explicit, cell-centered, total variable di-
minishing (TVD) method, that utilizes an arbitrary
Lagrangian-Eulerian (ALE) time split operator for ad-
vancing the averaged flow variables. For details of
the turbulence model and numerical method, refer to
Ref. [12].

4 RESULTS

All simulations were run in a 2-D axisymmetric coor-
dinate system. Based on the pressure ratio values, the
inlet boundary conditions (velocity, density and tem-
perature) corresponding to the nozzle exit were calcu-
lated. The ambient pressure was applied as a boundary
condition far from the jet centerline. The calculations
were performed on different computational domains
and using different meshes, to assess both domain size
and mesh dependence. Simulations were run from t=0
to t=20 msec. After about 4 msec the jet flow reached a
quasi-steady form, but as expected, the time dependent
oscillations in flow parameters were not damped. Data
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Figure 3: Distribution of instantaneous pressure at dif-
ferent times (top), and time average pressure (bottom)
along the jet centerline. The circles show the measure-
ments of Seiner and Norum [3].

files were dumped every 2× 10−4 sec, i.e. the ”sam-
pling” frequency was 1/(2× 10−4) Hz. Using higher
sampling frequencies did not yield significantly differ-
ent results.

Figure 3 (top) shows instantaneous pressure along the
centerline of the jet, corresponding to 80 different
times from 4 msec to 20 msec. As can be seen, for the
first diameter away from the nozzle exit, the pressure
does not fluctuate; this is in agreement with the mea-
surements of Panda [1], that indicated the shock cell
closest to the nozzle exit does not oscillate. Further
downstream, the value of pressure at each point fluc-
tuates with time and the thin lines, related to instan-
taneous pressure, form one thick line. Figure 3 (bot-
tom) shows the time average pressure along the cen-
terline. As shown in Figure 3, overall agreement of the
simulation results with the data set of Seiner and No-
rum [3] is satisfactory. The discrepancies, especially in
the pressure wave amplitudes, may be due to both ex-
perimental errors (especially given the unsteady nature
of the flow), and the inability of RANS simulations to
capture some of the physical phenomena of the flow.
Similar disagreements have been reported by other re-
searchers (e.g. [13] and [14]).

To show that the fluctuations are not limited to the cen-
terline and occur throughout the flow field, the instan-
taneous and time average pressures along r/D = 0.25
and r/D = 0.45 lines are plotted in Figures 4 and 5,
respectively; note that the experimental data shown in
these two figures are those of Norum and Seiner [15].
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Figure 4: Distribution of instantaneous pressure at dif-
ferent times (top), and time average pressure (bottom)
along r/D = 0.25. The circles show the measurements
of Norum and Seiner [15].
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Figure 5: Distribution of instantaneous pressure at dif-
ferent times (top), and time average pressure (bottom)
along r/D = 0.45. The circles show the measurements
of Norum and Seiner [15].
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Figure 6: Instability wave kinetic energy contours.

To better assess these fluctuations in the time domain,
it is useful to look at the root mean squared (rms) val-
ues of the flow parameters. We define a kinetic energy
related to fluctuations of the flow parameters, Krms,

Krms =
1
2

ρM(u2
x,rms +u2

r,rms) (15)

where ρM is the time average density, and ux,rms and
ur,rms are the rms values of axial and radial flow veloc-
ities, respectively. We refer to this as the ”instability
wave kinetic energy”, since the fluctuations are caused
by the flow instabilities.

Figure 6 shows contours of the instability wave kinetic
energy, obtained from simulation. The maximum ki-
netic energy occurs at the jet boundary close to the
nozzle exit; see the red color in the contour. This
should be related to Kelvin-Helmholtz instabilities, as
they occur at the boundary of the jet with the ambient
fluid. In the rest of the plot, the higher kinetic energies
can be seen as oblique lines. These are the oblique
shock waves formed in the under-expanded jet, and
indicate that the maximum fluctuations occur in the
vicinity of shocks. Studying the pressure contours con-
firms this finding, indicating that the fluctuations re-
sult from the interaction of instability waves and shock
waves: Figure 7 (top) shows the time average pressure,
PM, contours, and Figure 7 (bottom) shows the rms
pressure, Prms, contours, normalized by the ambient
pressure, P∞. The vertical dashed lines show the lo-
cations at which Prms is maximum; as can be seen, the
maximum Prms correspond to the points between the
compression and expansion regions, where the shock
waves form. This, again, confirms that the maximum
fluctuations occur in the vicinity of the shock waves.

The time dependent fluctuations can be transferred to
the frequency domain using a Fourier transform. Fig-
ure 8 shows the same time average pressure contour
(top), and the dominant Fourier transform of pressure
(middle) and axial velocity (bottom) fluctuations along
the jet centerline. It can be seen that the dominant
Fourier transforms occur where the shock waves form,
i.e. in front of the compression regions. This, again,
confirms that the maximum fluctuations occur close to
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Figure 7: Time average (top) and rms (bottom) pres-
sure contours; the vertical dashed lines show the loca-
tions at which Prms is maximum.

shock waves.

Finally, Figure 9 shows the Fourier transform of pres-
sure fluctuation at one point in the physical domain
(x/D=5, r/D=0.5), versus frequency. As can be
seen, the dominant Fourier transforms correspond to
two distinct frequency ranges. These two distinct
frequency ranges may be related to two instabili-
ties: Kelvin-Helmholtz, and acoustic instability waves.
These results are qualitatively in agreement with the
results of the linear instability theory. Studying the
spectrum at other points in the physical domain yielded
similar results.

Future work includes filtering these dominant frequen-
cies (one at a time, as illustrated in Figure 10), and
then transferring the results back to the time domain,
to confirm that the two dominant frequency ranges are
related to the Kelvin-Helmholtz and acoustic instabil-
ity waves.
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